Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Genetic mapping of floral traits associated with reproductive isolation in monkeyflowers (Mimulus)

Abstract

SPECIATION is the process whereby populations acquire sufficient genetic differences to become reproductively isolated1. Since Darwin it has been recognized that the tempo and mode of specia-tion are greatly influenced by the number and magnitude of genetic changes required for reproductive isolation2–6, but detailed genetic studies have been limited to a few taxa such as Drosophila7. Genome mapping techniques now widely adopted in plant8,9 and animal10,11 breeding make it possible to investigate the genetic basis of reproductive isolating mechanisms in natural populations. Here we use this approach to map eight floral traits in two sym-patric monkeyflower species that are reproductively isolated owing to pollinator preference by bumblebees or hummingbirds. For each trait we found at least one quantitative trait locus accounting for more than 25% of the phenotypic variance. This suggests that genes of large effect can contribute to speciation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mayr, E. Animal Species and Evolution (Harvard Univ. Press, Cambridge, Massachusetts, 1963).

    Book  Google Scholar 

  2. Maynard Smith, J. A. Rev. Genet. 17, 11–25 (1983).

    Article  Google Scholar 

  3. Macnair, M. R. & Christie, P. Heredity 50, 295–302 (1983).

    Article  CAS  Google Scholar 

  4. Barton, N. H. & Charlesworth, B. A. Rev. Ecol. Syst. 15, 133–164 (1984).

    Article  Google Scholar 

  5. Gottlieb, L. D. Am. Nat. 123, 681–709 (1984).

    Article  Google Scholar 

  6. Coyne, J. A. Nature 355, 511–515 (1992).

    Article  ADS  CAS  Google Scholar 

  7. Coyne, J. A. Evolution 47, 778–788 (1993).

    Article  Google Scholar 

  8. Paterson, A. H. et al. Nature 335, 721–726 (1988).

    Article  ADS  CAS  Google Scholar 

  9. Stuber, C. W., Lincoln, S. E., Wolff, D. W., Helentjaris, T. & Lander, E. S. Genetics 132, 823–839 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Andersson, L. et al. Science 263, 1771–1774 (1994).

    Article  ADS  CAS  Google Scholar 

  11. Georges, M. et al. Genetics 139, 907–920 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Vickery, R. K. Jr in Evolutionary Biology (eds Hecht, M. K., Steere, W. C. & Wallace, B.) 405–507 (Plenum, New York, 1978).

    Book  Google Scholar 

  13. Grant, V. Proc. natn. Acad. Sci. U.S.A. 91, 10407–10411 (1994).

    Article  ADS  CAS  Google Scholar 

  14. Hiesey, W. M., Nobs, M. A. & Bjorkman, O. Carnegie Inst. Washington Publ. 628 1, 1–213 (Washington DC, 1971).

    Google Scholar 

  15. Vickery, R. K. Jr Great Basin Naturalist 52, 145–148 (1992).

    Google Scholar 

  16. Faegri, K. & van der Pijl, L. The Principles of Pollination Ecology (Pergamon, New York, 1979).

    Google Scholar 

  17. Daumer, K. Z. vergl. Physiol. 41, 49–110 (1958).

    Google Scholar 

  18. Kevan, P. G. in Handbook of Experimental Pollination Biology (eds Jones, C. E. & Little, R. J.) 3–30 (Reinhold, New York, 1983).

    Google Scholar 

  19. Ott, J. Analysis of Human Genetic Linkage (Johns Hopkins Univ. Press, Baltimore, Maryland, 1985).

    Google Scholar 

  20. Zeng, Z.-B. Genetics 136, 1457–1468 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Williams, J. G. K., Kubelik, A. R., Livak, K. J., Rafalski, J. A. & Tingey, S. V. Nucleic Acids Res. 18, 6531–6535 (1990).

    Article  CAS  Google Scholar 

  22. Werth, C. R. Virginia J. Sci. 36, 53–76 (1985).

    Google Scholar 

  23. Lander, E. S. et al. Genomics 1, 174–181 (1987).

    Article  CAS  Google Scholar 

  24. Lander, E. S. & Botstein, D. Genetics 121, 185–199 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Hulbert, S. H. et al. Genetics 120, 947–958 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Paterson, A. H., DeVerna, J. W., Lanini, B. & Tanksley, S. D. Genetics 124, 735–742 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bradshaw, H., Wilbert, S., Otto, K. et al. Genetic mapping of floral traits associated with reproductive isolation in monkeyflowers (Mimulus). Nature 376, 762–765 (1995). https://doi.org/10.1038/376762a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/376762a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing