Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mineral chemistry and density of subducted basaltic crust at lower-mantle pressures

Abstract

SUBDUCTED slabs are less dense than the surrounding mantle near the base of the transition zone (~660 km depth) because of the survival of garnet in former basaltic crust: by this depth mantle peridotite has transformed to denser perovskitite1'2. The buoyancy of the former basaltic crust may contribute to the observed accu-mulation or horizontal displacement of many slabs at the base of the transition zone3. Here we report experimental confirmation of the widely held belief that the basaltic crust of slabs eventually transforms to a dense perovskititic lithology, stable in the lower mantle. Synthetic mid-ocean-ridge basalt (MORE) glass subjected to pressures of 45, 80 and 100 GPa in a laser-heated diamond anvil cell transforms to an assemblage of aluminous Mg,Fe silicate perovskite, non-quenchable CaSiO3 perovskite, stishovite and a sodic, aluminous phase with the Ca-ferrite structure (Fig. 1). Per-ovskititic MORE is about 0.06 g cm-3 more dense than a model lower mantle (PREM) derived from seismological data. Thus even thermally equilibrated perovskititic slabs should encounter no sig-nificant hindrance to subduction and convection in the lower mantle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Irifune, T. The Island Arc 2, 55–71 (1993).

    Article  Google Scholar 

  2. Irifune, T. & Ringwood, A. E. Earth planet. Sci. Lett. 117, 101–110 (1993).

    Article  ADS  CAS  Google Scholar 

  3. Ringwood, A. E. Phys. Earth planet. Inter. 86, 5–24 (1994).

    Article  ADS  CAS  Google Scholar 

  4. O'Neill, B. & Jeanloz, R. J. geophys. Res. (in the press).

  5. O'Neill, B. & Jeanloz, R. (abstr.) EOS 74, 584 (1993).

    Google Scholar 

  6. Bell, P. M., Mao, H.-K., Weeks, R. A. & van Valkenburg, A. Carnegie Instn Wash. Yb. 74, 515–510 (1975).

    Google Scholar 

  7. Irifune, T. & Ringwood, A. E. in High pressure Research in Geophysics (eds Manghnani, M. & Syono, Y.) 231–242 (Terra Sci., Tokyo, 1987).

    Google Scholar 

  8. Yagi, T., Bell, P. M. & Mao, H. K. Carnegie Instn Wash. Yb. 78, 614–618 (1979).

    Google Scholar 

  9. Fei, Y. & Wang, Y. (abstr.) EOS 73, 596 (1992).

    Google Scholar 

  10. Fitz Gerald, J. D., Kesson, S. E. & Shelley, J. M. G. (abstr.) EOS 75, 339 (1994).

    Article  Google Scholar 

  11. Liu, L-G. Geophys. Res. Lett. 4, 183–186 (1977).

    Article  ADS  CAS  Google Scholar 

  12. Irifune, T., Fujino, K. & Ohtani, E. Nature 349, 409–411 (1991).

    Article  ADS  CAS  Google Scholar 

  13. Ita, J. & Stixrude, L. J. geophys. Res. 97, 6849–6866 (1992).

    Article  ADS  CAS  Google Scholar 

  14. Dziewonski, A. M. & Anderson, D. L. Phys. Earth planet. Inter. 25, 297–356 (1981).

    Article  ADS  Google Scholar 

  15. Boehler, R. Earth planet. Sci. Lett. 111, 217–227 (1992).

    Article  ADS  CAS  Google Scholar 

  16. Grand, S. P. J. geophys. Res. 99, 11591–11621 (1994).

    Article  ADS  Google Scholar 

  17. Ringwood, A. E. Ceochim. cosmochim. Acta 55, 2083–2110 (1991).

    Article  ADS  CAS  Google Scholar 

  18. van der Hilst, R. & Seno, T. Earth planet. Sci. Lett. 120, 395–407 (1993).

    Article  ADS  Google Scholar 

  19. Tackley, P. J., Stevenson, D. J., Glatzmaier, G. A. & Schubert, G. Nature 361, 699–704 (1993).

    Article  ADS  Google Scholar 

  20. Hofmann, A. W. & White, W. M. Earth planet. Sci. Lett. 57, 421–436 (1982).

    Article  ADS  CAS  Google Scholar 

  21. Kesson, S. E. & Fitz Gerald, J. D. Earth planet. Sci. Lett. 111, 229–240 (1991).

    Article  ADS  Google Scholar 

  22. Duffy, T. S. & Anderson, D. L. J. geophys. Res. 94, 1895–1912 (1989).

    Article  ADS  CAS  Google Scholar 

  23. Christensen, U. R. & Hofmann, A. W. J. geophys. Res. (in the press).

  24. Wang, Y., Weidner, D. J., Liebermann, R. J. & Zhao, Y. Phys. Earth planet. Inter. 83, 13–40 (1994).

    Article  ADS  CAS  Google Scholar 

  25. Liu, L. Earth planet. Sci. Lett. 41, 398–404 (1978).

    Article  ADS  CAS  Google Scholar 

  26. Zerr, A. & Boehler, R. Science 262, 553–555 (1993).

    Article  ADS  CAS  Google Scholar 

  27. Heinz, D. L. & Jeanloz, R. in High Pressure Research in Mineral Physics (eds Manghnani, M. H. & Syono, Y.) 113–127 (Terra Sci., Tokyo, 1987).

    Google Scholar 

  28. Bell, P. M. & Mao, H.-K. Carnegie Instn Wash. Yb. 74, 399–402 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kesson, S., Fitz Gerald, J. & Shelley, J. Mineral chemistry and density of subducted basaltic crust at lower-mantle pressures. Nature 372, 767–769 (1994). https://doi.org/10.1038/372767a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/372767a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing