Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

c-Fos transcriptional activity stimulated by H-Ras-activated protein kinase distinct from JNK and ERK

Abstract

RAS proteins exert their mitogenic and oncogenic effects through activation of downstream protein kinases1. An important question is how Ras-generated signals reach the nucleus to activate down-stream target genes. AP-1, a heterodimeric complex of Jun and Fos proteins, which activates mitogen-inducible genes2, is a major nuclear target of Ras3. Ras can stimulate AP-1 activity by inducing c-fos transcription2,3, a process which is probably mediated by the ERK1 and -2 mitogen-activated protein (MAP) kinases4, which phosphorylate the transcription factor Elk-1/TCF5,6. Besides inducing transcription from fos and jun genes, mitogens and Ras proteins enhance AP-1 activity through phosphorylation of c-Jun7,8. Phosphorylation of the c-Jun activation domain leads to c-jun induction through an autoregulatory loop2. Ras- and ultra-violet-responsive protein kinases that phosphorylate c-Jun on ser-ine residues at positions 63 and 73 and stimulate its transcriptional activity have been identified9. These proline-directed kinases, termed JNKs, are novel MAP kinases10. It is not clear, however, whether c-Jun is the only recipient and JNK the only transducer of the Ras signal to AP-1 proteins. A short sequence surrounding the major JNK phosphorylation site of c-Jun is conserved in c-Fos and is part of its activation domain11, suggesting that c-Fos may be similarly regulated. Here we show that Ras does indeed augment the transcriptional activity of c-Fos through phosphoryla-tion at Thr 232, the homologue of Ser 73 of c-Jun. However, this is mediated by a novel Ras- and mitogen-responsive proline-directed protein kinase that is different from JNKs and ERKs. Therefore, at least three types of proline-directed kinases4 transmit Ras- and mitogen-generated signals to the transcriptional machinery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Egan, S. E. & Weinberg, R. A. Nature 365, 781–783 (1993).

    Article  ADS  CAS  Google Scholar 

  2. Angel, P. & Karin, M. Biochem. biophys. Acta 1072, 129–157 (1991).

    CAS  PubMed  Google Scholar 

  3. Herrlich, P. & Ponta, H. Trends Genet. 5, 112–116 (1989).

    Article  CAS  Google Scholar 

  4. Thomas, G. Cell 68, 3–6 (1992).

    Article  CAS  Google Scholar 

  5. Gille, H., Sharrocks, A. & Shaw, P. Nature 358, 414–417 (1992).

    Article  ADS  CAS  Google Scholar 

  6. Marais, R., Wynne, J. & Treisman, R. Cell 73, 381–393 (1993).

    Article  CAS  Google Scholar 

  7. Binetruy, B., Smeal, T. & Karin, M. Nature 351, 122–127 (1991).

    Article  ADS  CAS  Google Scholar 

  8. Smeal, T., Binetruy, B., Mercola, D., Birrer, M. & Karin, M. Nature 354, 494–496 (1991).

    Article  ADS  CAS  Google Scholar 

  9. Hibi, M., Lin, A., Smeal, T., Minden, A. & Karin, M. Genes Dev. 7, 2135–2148 (1993).

    Article  CAS  Google Scholar 

  10. Dérijard, B. et al. Cell 75, 1025–1037 (1994).

    Article  Google Scholar 

  11. Sutherland, J. A., Cook, A., Bannister, A. J. & Kouzarides, T. Genes Dev. 6, 1810–1819 (1992).

    Article  CAS  Google Scholar 

  12. Bodner, M. et al. Cell 55, 505–518 (1988).

    Article  CAS  Google Scholar 

  13. Feig, L. A. & Cooper, G. M. Molec. cell. Biol. B, 3235–3243 (1988).

    Article  Google Scholar 

  14. Smeal, T. et al. Molec. cell. Biol. 12, 3507–3513 (1992).

    Article  CAS  Google Scholar 

  15. Devary, Y. et al. Cell 71, 1081–1091 (1992).

    Article  CAS  Google Scholar 

  16. Thomas, S. M., DeMarco, M., D'Arcangelo, G., Halegoua, S. & Brugge, J. S. Cell 68, 1031–1040 (1992).

    Article  CAS  Google Scholar 

  17. Schonthal, A., Herrlich, P., Rahmsdorf, H. J. & Ponta, H. Cell 54, 325–334 (1988).

    Article  CAS  Google Scholar 

  18. Chiu, R. et al. Cell 54, 541–552 (1988).

    Article  CAS  Google Scholar 

  19. Kouzarides, T. & Ziff, E. Nature 336, 646–656 (1988).

    Article  ADS  CAS  Google Scholar 

  20. Smeal, T., Angel, P., Meek, J. & Karin, M. Genes Dev. 3, 2091–2100 (1989).

    Article  CAS  Google Scholar 

  21. Boyle, W. J., van der Geer, P. & Hunter, T. Meth. Enzym. 201, 110–149 (1991).

    Article  CAS  Google Scholar 

  22. Landon, M. Meth. Enzym. 47, 145–149 (1977).

    Article  CAS  Google Scholar 

  23. Alvarez, E. et al. J. biol. Chem. 266, 15297–1585 (1991).

    Google Scholar 

  24. Buday, L. & Downward, J. Cell 73, 611–620 (1993).

    Article  CAS  Google Scholar 

  25. Kameshita, I. & Fujisawa, H. Analyt. Biochem. 183, 139–143 (1989).

    Article  CAS  Google Scholar 

  26. Szeberenyi, J., Cai, H. & Copper, G. M. Molec. cell. Biol. 10, 5324–5332 (1990).

    Article  CAS  Google Scholar 

  27. Blenis, J. Cancer Cells 3, 445–149 (1991).

    CAS  PubMed  Google Scholar 

  28. Chen, R. H., Abate, C. & Blenis, J. Proc. natn. Acad. Sci. U.S.A. 90, 10952–10956 (1993).

    Article  ADS  CAS  Google Scholar 

  29. Stokoe, D., Caudwell, B., Cohen, P. T. W. & Cohen, P. Biochem. J. 296, 843–849 (1993).

    Article  CAS  Google Scholar 

  30. Kemp, B. E. & Pearson, R. D. Trend biochem. Sci. 15, 312–316 (1990).

    Article  Google Scholar 

  31. Westwick, J. et al. Proc. natn. Acad. Sci. U.S.A. 91, 6030–6034 (1994).

    Article  ADS  CAS  Google Scholar 

  32. Schlessinger, J. & Ullrich, A. Neuron 9, 383–391 (1992).

    Article  CAS  Google Scholar 

  33. Angel, P., Smeal, T., Meek, J. & Karin, M. New Biol. 1, 35–43 (1989).

    CAS  PubMed  Google Scholar 

  34. Arias, J. et al. Nature 370, 226–229 (1994).

    Article  ADS  CAS  Google Scholar 

  35. Feigner, P. L. et al. Proc. natn. Acad. Sci. U.S.A. 84, 7413–7418 (1987).

    Article  ADS  Google Scholar 

  36. Deng, T. & Karin, M. Genes Dev. 7, 479–490 (1993).

    Article  CAS  Google Scholar 

  37. Green, S., Issemann, I. & Sheer, E. Nucleic Acids Res. 16, 369 (1988).

    Article  CAS  Google Scholar 

  38. Ellis, L. et al. Cell 45, 721–732 (1986).

    Article  CAS  Google Scholar 

  39. West, B. L. et al. Molec. cell. Biol. 7, 1193–1197 (1987).

    Article  CAS  Google Scholar 

  40. de Togni, P., Niman, H., Raymond, V., Sawchenko, P. & Verma, I. M. Molec. cell. Biol. 8, 2251–2256 (1988).

    Article  CAS  Google Scholar 

  41. Tratner, I., Ofir, R. & Verma, I. M. Molec. cell. biol. 12, 998–1006 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, T., Karin, M. c-Fos transcriptional activity stimulated by H-Ras-activated protein kinase distinct from JNK and ERK. Nature 371, 171–175 (1994). https://doi.org/10.1038/371171a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/371171a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing