Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evidence for two kinds of hydrogen bond in ice

Abstract

DESPITE its simplicity at the molecular level, water is a complex and poorly understood liquid1. The reasons for this centre around the existence of a dynamic hydrogen-bonded network throughout the liquid. Attempts to describe the structure of liquid water have tended to invoke either continuum models such as the 'distortedbond' model2, which assumes that the hydrogen-bonded structure relaxes on a timescale similar to that in other liquids, and mixture models, such as the 'flickering-cluster' model3, which postulate the coexistence of two or more long-lived structures in the liquid. Here we analyse inelastic neutron-scattering spectra for the ice I solid phase of water, which provide evidence for the existence of two different kinds of hydrogen-bond, of different strengths, in the solid. A model in which strong and weak hydrogen-bonds in the ratio of about 2:1 are randomly distributed throughout the network is able to reproduce the neutron spectra. If we can assume that the same kind of bimodal hydrogen-bonding exists in the liquid state, our model may be able to explain several of the anomalous properties of liquid water, such as the large specific heat and the unusual behaviour of water in thin films and clusters.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Frank, H. S. in Water: A Comprehensive Treatise Vol. 1 (ed. Franks, F.) 515–577 (Plenum, New York & London, 1972).

    Google Scholar 

  2. Pople, J. A. Proc. R. Soc. A205, 163–171 (1957).

    Google Scholar 

  3. Frank, H. S. & Wen, W.-Y., Discuss Farad. Soc. 24, 133–148 (1957).

    Article  Google Scholar 

  4. Morokuma, K. & Pedersen, L. J. chem. Phys. 48, 3275–3282 (1968).

    Article  ADS  CAS  Google Scholar 

  5. Millot, C. & Stone, A. J. Molec. Phys. 77, 439–462 (1992).

    Article  ADS  CAS  Google Scholar 

  6. Lee, C. et al. Phys. Rev. Lett. 69, 462–465 (1992).

    Article  ADS  CAS  Google Scholar 

  7. Finney, J. L., Quinn, J. E. & Baum, J. O. in Water Science Review Vol. 1 (ed. Franks, F.) 93–170 (Cambridge Univ. Press, 1985).

    Google Scholar 

  8. Whalley, E. & Bertie, J. E. J. chem. Phys. 46, 1271–1284 (1967).

    Article  ADS  Google Scholar 

  9. Mineeva-Sukarova, B., Sherman, W. F. & Wilkinson, G. R. J. Phys. C17, 5833–5850 (1984).

    ADS  Google Scholar 

  10. Prask, H., Boutin, H. & Yip, S. J. chem. Phys. 48, 3367–3376 (1968).

    Article  ADS  CAS  Google Scholar 

  11. Renker, B. in Physics and Chemistry of Ice (eds Whalley, E., Hones, S. J. & Gold, L. W.) 82–89 (Univ. of Toronto Press, 1973).

    Google Scholar 

  12. Chen, S.-H. Proc. of the NATO Adv. Study Inst. on Hydrogen-bonded Liquids (eds Dore, J. C. & Teixeira, J.) 289–295 (Kluwer Academic, London, 1991).

    Book  Google Scholar 

  13. Sevensson, E. C. et al. in Phonon 89 (eds Hunklinger, S., Lugwig, W. & Weiss, G.) 537–541 (World Scientific, London, 1990).

    Google Scholar 

  14. Li, J-C., Ross, D. K., Hall, P. G. & Tomkinson, J. J. phys. B156/157, 376–379 (1989).

    Google Scholar 

  15. Li, J-C. et al. J. chem. phys. 94, 6770–6775 (1991).

    Article  ADS  CAS  Google Scholar 

  16. Li, J-C. & Ross, D. K. Int. Conf. on Phys. and Chem. of Ice (eds Maeno, N. & Hondoh, T.) 27–34 (Hokkaido Univ. Press, 1992).

    Google Scholar 

  17. Li, J-C. et al. J. Phys. Condensed Matter 4, 2109–2116 (1992).

    Article  ADS  CAS  Google Scholar 

  18. Marchi, M., Tse, J. S. & Klein, L. J. chem. Phys. 85, 2414–2419 (1986).

    Article  ADS  CAS  Google Scholar 

  19. Kolesnikov, A. I. et al. Phys. Lett. A168, L308–L312 (1992).

    Article  ADS  Google Scholar 

  20. Kistenmacher, H., Popkie, H. & Clementi, E. J. chem. Phys. 60, 4455–4465 (1972).

    Article  ADS  Google Scholar 

  21. Stanley, H. E. & Teixeia, J. J. chem. Phys. 73, 3404–3422 (1980).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  22. Li, J-C. et al. Inst. of Phys. Conf. Ser. Vol. 101 (eds Fairbanks, M. C, North, A. N. & Newport, R. J.) 109–118 (Arrowsmith, Bristol, 1990).

    Google Scholar 

  23. Etzler, F. M. & Drost-Hanson, W. Croatica Chemica Acta 56, 563–592 (1983).

    CAS  Google Scholar 

  24. Bernal, J. D. & Fowler, R. H. J. chem. Phys. 1, 515–548 (1933).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Ross, D. Evidence for two kinds of hydrogen bond in ice. Nature 365, 327–329 (1993). https://doi.org/10.1038/365327a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/365327a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing