Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mechanical detection of magnetic resonance

Abstract

CONVENTIONAL techniques for measuring magnetic resonance involve the detection of electromagnetic signals induced in a coil or microwave cavity by the collective precession of magnetic moments (from nuclei or electrons) excited by an alternating magnetic field. In a different approach1, isolated electron spins have been detected by scanning tunnelling microscopy, with the spin precession inducing a radiofrequency modulation in the tunnelling current. Here, we describe a new and extremely sensitive method of detection, the principles of which derive from magnetic force microscopy2–5 and a recent proposal6,7 by one of us (J.A.S.). We measure the small, oscillatory magnetic force (10−14 N) acting on a paramagnetic sample (a few grains of diphenylpicrylhydrazil, weighing < 30 ng) which has been excited into magnetic resonance in the presence of an inhomogeneous magnetic field. This force is detected by optically sensing the angstrom-scale vibration of a micromechanical cantilever on which the sample is mounted. The sensitivity of this technique to the spatial distribution of the spins suggests that mechanical detection of magnetic resonance has the potential for imaging microscopic samples in three dimensions. So far, we have achieved a spatial resolution of 19 μm in one dimension.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Manassen, Y., Hamers, R. J., Demuth, J. E. & Castellano, A. J. Jr Phys. Rev. Lett. 62, 2531–2534 (1989).

    Article  ADS  CAS  Google Scholar 

  2. Martin, Y. & Wickramasinghe, H. K. Appl. Phys. Lett. 50, 1455–1457 (1987).

    Article  ADS  Google Scholar 

  3. Saenz, J. J. et al. J. appl. Phys. 62, 4293–4295 (1987).

    Article  ADS  Google Scholar 

  4. Rugar, D. et al. J. appl. Phys. 68, 1169–1183 (1990).

    Article  ADS  CAS  Google Scholar 

  5. Grütter, P., Mamin, H. J. & Rugar, D. in Scanning Tunneling Microscopy II (eds Wiesendanger, R. & Güntherodt, H.-J.) 151–207 (Springer, Berlin, 1992).

    Book  Google Scholar 

  6. Sidles, J. A. Appl. Phys. Lett. 58, 2854–2856 (1991).

    Article  ADS  Google Scholar 

  7. Sidles, J. A. Phys. Rev. Lett. 68, 1124–1126 (1992).

    Article  ADS  CAS  Google Scholar 

  8. Jackson, J. D. Classical Electrodynamics. 185 (Wiley, New York, 1975).

    MATH  Google Scholar 

  9. Abragam, A. The Principles of Nuclear Magnetism, 39–57 (Oxford Univ. Press, London, 1961).

    Google Scholar 

  10. Garstens, M. A. & Kaplan, J. I. Phys. Rev. 99, 459–463 (1955).

    Article  ADS  Google Scholar 

  11. Whitfield, G. & Redfield, A. G. Phys. Rev. 106, 918–920 (1957).

    Article  ADS  CAS  Google Scholar 

  12. van Itterbeek, A. Labro. M. Physica 30, 157–160 (1964).

    CAS  Google Scholar 

  13. Albrecht, T. R., Akamine, S., Carver, T. E. & Quate, C. F. J. Vac. Sci. Technol. A8, 3386–3396 (1990).

    Article  ADS  CAS  Google Scholar 

  14. Rugar, D., Mamin, H. J. & Guethner, P. Appl. Phys. Lett. 55, 2588–2590 (1989).

    Article  ADS  CAS  Google Scholar 

  15. Heer, C. V. Statistical Mechanics, Kinetic Theory, and Stochastic Processes, 431 (Academic, New York, 1972).

    Google Scholar 

  16. Dürig, U., Züger, O. & Stalder, A. J. appl. Phys. 72, 1778–1798 (1992).

    Article  ADS  Google Scholar 

  17. Sidles, J. A., Garbini, J. L. & Drobny, G. P. Rev. Sci. Instrum. 63, 3881–3899 (1992).

    Article  ADS  CAS  Google Scholar 

  18. Gibson, G. A. & Schultz, S. J. appl. Phys. 69, 5880–5882 (1991).

    Article  ADS  Google Scholar 

  19. Foster, J. S. & Rugar, D. IEEE Trans. Sonics and Ultrasonics SU-32, 139–151 (1985).

    Article  Google Scholar 

  20. Rugar, D. & Grütter, P. Phys. Rev. Lett. 67, 699–702 (1989).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rugar, D., Yannoni, C. & Sidles, J. Mechanical detection of magnetic resonance. Nature 360, 563–566 (1992). https://doi.org/10.1038/360563a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/360563a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing