Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Self-splicing introns in tRNA genes of widely divergent bacteria

Abstract

THE organization of eukaryotic genes into exons separated by introns has been considered as a primordial arrangement1,2 but because it does not exist in eubacterial genomes it may be that introns are relatively recent acquisitions3. A self-splicing group I intron has been found in cyanobacteria at the same position of the same gene (that encoding leucyl transfer RNA, UAA anticodon) as a similar group I intron of chloroplasts4,5, which indicates that this intron predates the invasion of eukaryotic cells by cyanobac-terial endosymbionts. But it is not clear from this isolated example whether introns are more generally present in different genes or in more diverse branches of the eubacteria. Many mitochondria have intron-rich genomes and were probably derived from the alpha subgroup of the purple bacteria6 (or Proteobacteria7), so ancient introns might also have been retained in these bacteria. We describe here the discovery of two small (237 and 205 nucleotides) self- splicing group I introns in members of two proteobacterial subgroups, Agrobacterium tumefaciens (α) and Azoarcus sp. (β). The introns are inserted in genes for tRNAArg and tRNAIle respectively, after the third anticodon nucleotide. Their occurrence in different genes of phyogenetically diverse bacteria indicates that group I introns have a widespread distribution among eubacteria.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gilbert, W. Nature 271, 501 (1978).

    Article  ADS  CAS  Google Scholar 

  2. Darnell, J. E. & Doolittle, W. F. Proc. natn. Acad. Sci. U.S.A. 83, 1271–1275 (1986).

    Article  ADS  CAS  Google Scholar 

  3. Palmer, J. D. & Logsdon, J. M. Curr. Opin. Genet. Dev. 1, 470–477 (1991).

    Article  CAS  Google Scholar 

  4. Kuhsel, M. G., Strickland, R. & Palmer, J. D. Science 250, 1570–1573 (1990).

    Article  ADS  CAS  Google Scholar 

  5. Xu, M.-Q., Kathe, S. D., Goodrich-Blair, H., Nierzwicki-Bauer, S. A. & Shub, D. A. Science 250, 1566–1570 (1990).

    Article  ADS  CAS  Google Scholar 

  6. Yang, D., Oyaizu, Y., Oyaizu, H., Olsen, G. J. & Woese, C. R. Proc. natn. Acad. Sci. U.S.A. 82, 4443–4447 (1985).

    Article  ADS  CAS  Google Scholar 

  7. Stackebrandt, E., Murray, R. G. E. & Trüper, H. G. Int. J. syst. Bact. 38, 321–325 (1988).

    Article  Google Scholar 

  8. Cech, T. R., Zaug, A. J. & Grabowski, P. J. Cell 27, 487–496 (1981).

    Article  CAS  Google Scholar 

  9. Winans, S. C., Kerstetter, R. A. & Nester, E. W. J. Bact. 170, 4047–4054 (1988).

    Article  CAS  Google Scholar 

  10. Kruger, K. et al. Cell 31, 147–157 (1982).

    Article  CAS  Google Scholar 

  11. Cech, T. R. Gene 73, 259–271 (1988).

    Article  CAS  Google Scholar 

  12. Michel, F. & Westhof, E. J. molec. Biol. 216, 585–610 (1990).

    Article  CAS  Google Scholar 

  13. Antao, V. P., Lai, S. Y. & Tinoco, I. Jr Nucleic Acids Res. 19, 5901–5905 (1991).

    Article  CAS  Google Scholar 

  14. Muramatsu, T. et al. Nature 336, 179–181 (1988).

    Article  ADS  CAS  Google Scholar 

  15. Sprinzl, M., Dank, N., Nock, S. & Schön, A. Nucleic Acids Res. 19, (suppl.) 2127–2171 (1991).

    Article  CAS  Google Scholar 

  16. Schulman, L. H. & Pelka, H. Science 242, 765–768 (1988).

    Article  ADS  CAS  Google Scholar 

  17. Lee, C. P., Seong, B. L. & RajBhandary, U. L. J. biol. Chem. 266, 18012–18017 (1991).

    CAS  PubMed  Google Scholar 

  18. Johnson, P. F. & Abelson, J. Nature 302, 681–687 (1983).

    Article  ADS  CAS  Google Scholar 

  19. van Tol, H. & Beier, H. Nucleic Acids Res. 16, 1951–1966 (1988).

    Article  CAS  Google Scholar 

  20. Choffat, Y., Suter, B., Behra, R. & Kubli, E. Molec. cell. Biol. 8, 3332–3337 (1988).

    Article  CAS  Google Scholar 

  21. Nagel, G. M. & Doolittle, R. F. Proc. natn. Acad. Sci. U.S.A. 88, 8121–8125 (1991).

    Article  ADS  CAS  Google Scholar 

  22. Woodson, S. A. & Cech, T. R. Cell 57, 335–345 (1989).

    Article  CAS  Google Scholar 

  23. Woese, C. R. Microbiol. Rev. 51, 221–271 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Young, J. P. W. in Biological Nitrogen Fixation (eds Stacey, G., Burris, R. H. & Evans, H. J.) 43–86 (Chapman & Hall, New York, 1992).

    Google Scholar 

  25. Gott, J. M., Shub, D. A. & Belfort, M. Cell 47, 81–87 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reinhold-Hurek, B., Shub, D. Self-splicing introns in tRNA genes of widely divergent bacteria. Nature 357, 173–176 (1992). https://doi.org/10.1038/357173a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/357173a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing