Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ancestry of unisexual salamanders

Abstract

IN eastern North America there are populations of all-female salamanders that incorporate the nuclear genomes of two or three of four sympatric bisexual species. The hybrids can be diploid, triploid, tetraploid or pentaploid, and 18 different combinations have been reported. All hybrids require sperm from a sympatric male of one of the bisexual species to reproduce, but the sperm may or may not be incorporated in the egg. Some of the hybrids are believed to represent separate, clonal species, but little is known of the origin of this hybrid complex. Vertebrate mitochondrial DNA is inherited maternally, allowing identification of the female parent that gave rise to hybrid lineages. A portion of the cytochrome b gene was sequenced from diploid and triploid hybrids that represent combinations of all four species. Nearly all hybrids had a similar mitochondrial genome sequence, independent of nuclear genome composition and ploidy, and the sequence was distinct from that of any of the four bisexual species. The hybrids maintain a mitochondrial lineage that has evolved independently of their nuclear genome and represent the most ancient known unisexual vertebrate lineage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Vrijenhoek, R. C., Dawley, R. M., Cole, C. J. & Bogart, J. P. N.Y. State Mus. Bull. 466, 19–23 (1989).

    Google Scholar 

  2. Meyer, A., Kocher, T. D., Basasibwaki, P. & Wilson, A. C. Nature 347, 550–553 (1990).

    Article  CAS  ADS  Google Scholar 

  3. Bogart, J. P., Elinson, R. P. & Licht, L. E. Science 246, 1032–1034 (1989).

    Article  CAS  ADS  Google Scholar 

  4. Bogart, J. P. N.Y. State Mus. Bull. 466, 209–217 (1989).

    Google Scholar 

  5. Taylor, A. S. & Bogart, J. P. Genome 33, 837–844 (1990).

    Article  Google Scholar 

  6. Bogart, J. P. & Licht, L. E. Can. J. Genet. Cytol. 28, 605–617 (1986).

    Article  CAS  Google Scholar 

  7. Lowcock, L. A. & Bogart, J. P. Can. J. Zool. 67, 350–356 (1989).

    Article  Google Scholar 

  8. Uzzell, T. M. & Goldblatt, S. M. Evolution 21, 345–354 (1967).

    Article  Google Scholar 

  9. Sessions, S. Chromosoma 84, 599–621 (1982).

    Article  Google Scholar 

  10. Kraus, F. Occ. Pap. Mus. Zool. Univ. Michigan 709, 1–24 (1985).

    Google Scholar 

  11. Kraus, F. N.Y. State Museum Bull. 466, 218–227 (1989).

    Google Scholar 

  12. Kraus, F. & Miyamoto, M. M. Proc. natn. Acad. Sci. U.S.A. 87, 2235–2238 (1990).

    Article  CAS  ADS  Google Scholar 

  13. Anderson, S. et al. Nature 290, 457–465 (1981).

    Article  CAS  ADS  Google Scholar 

  14. Bogart, J. P. in Polyploidy: Biological Relevance (ed. Lewis, W. H.) 341–378 (Plenum, New York, 1980).

    Book  Google Scholar 

  15. Avise, J. C., Trexler, J. C., Travis, J. & Nelson, W. S. Evolution 45, 1530–1533 (1991).

    Article  Google Scholar 

  16. Irwin, D. M., Kocher, T. D. & Wilson, A. C. J. molec. Evol. 32, 128–144 (1991).

    Article  CAS  ADS  Google Scholar 

  17. Highton, R. & Webster, T. P. Evolution 30, 33–45 (1976).

    Article  CAS  Google Scholar 

  18. Quattro, J. M., Avise, J. C. & Vrijenhoek, R. C. Proc. natn. Acad. Sci. U.S.A. 89, 348–352 (1992).

    Article  CAS  ADS  Google Scholar 

  19. Kocher, T. D. et al. Proc. natn. Acad. Sci. U.S.A. 86, 6196–6200 (1989).

    Article  CAS  ADS  Google Scholar 

  20. Hedges, S. B., Bezy, R. L. & Maxson, L. R. Molec. Biol. Evol. 8, 767–780 (1991).

    CAS  PubMed  Google Scholar 

  21. Cabot, E. L. & Beckenbach, A. T. Comput. appl. Biosci. 5, 233–234 (1989).

    CAS  PubMed  Google Scholar 

  22. Saitou, N. & Nei, M. Molec. Biol. Evol. 4, 406–425 (1987).

    CAS  Google Scholar 

  23. Studier, J. A. & Keppler, K. J. Molec. Biol. Evol. 5, 729–731 (1988).

    CAS  PubMed  Google Scholar 

  24. Jukes, T. H. & Cantor, C. R. in Mammalian Protein Metabolism (ed. Munroe, H. N.) 21–132 (Academic, New York, 1969).

    Book  Google Scholar 

  25. Felsenstein, J. Evolution 39, 783–791 (1985).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hedges, S., Bogart, J. & Maxson, L. Ancestry of unisexual salamanders. Nature 356, 708–710 (1992). https://doi.org/10.1038/356708a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/356708a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing