Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Influencing intramolecular motion with an alternating electric field

Abstract

Analogues of mechanical devices that operate on the molecular level1,2,3,4,5, such as shuttles6,7,8,9,10, brakes11, ratchets12,13, turnstiles14 and unidirectional spinning motors15,16, are current targets of both synthetic chemistry and nanotechnology. These structures are designed to restrict the degrees of freedom of submolecular components such that they can only move with respect to each other in a predetermined manner, ideally under the influence of some external stimuli. Alternating-current (a.c.) electric fields are commonly used to probe electronic structure, but can also change the orientation of molecules17,18,19 (a phenomenon exploited in liquid crystal displays), or interact with large-scale molecular motions, such as the backbone fluctuations of semi-rigid polymers20,21. Here we show that modest a.c. fields can be used to monitor and influence the relative motion within certain rotaxanes22, molecules comprising a ring that rotates around a linear ‘thread’ carrying bulky ‘stoppers’ at each end. We observe strong birefringence at frequencies that correspond to the rate at which the molecular ring pirouettes about the thread, with the frequency of maximum birefringence, and by inference also the rate of ring pirouetting giving rise to it, changing as the electric field strength is varied. Computer simulations and nuclear magnetic resonance spectroscopy show the ring rotation to be the only dynamic process occurring on a timescale corresponding to the frequency of maximum birefringence, thus confirming that mechanical motion within the rotaxanes can be addressed, and to some extent controlled, by oscillating electric fields.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rotaxanes 1 and 2 showing preferred hydrogen bonding motifs (from MM3 calculations, 1H NMR spectroscopy, and X-ray crystallography of 2 and the bis-exopyridylmacrocycle analogue of 1).
Figure 2: Kerr-effect measurements (B in pm V-2) for rotaxanes 1 and 2.
Figure 3: Determination of the dynamic processes occurring in rotaxanes 1 and 2 by variable temperature NMR experiments.
Figure 4: Calculated transition-state structures for macrocyclic ring motions for rotaxanes 1 and 2.

Similar content being viewed by others

References

  1. Feynman, R. P. in Miniaturization (ed. Gilbert, H. D.) 282–296 (Reinhold, New York, 1961).

    Google Scholar 

  2. Mislow, K. Molecular machinery in organic chemistry. Chemtracts – Org. Chem. 2, 151–174 ( 1989).

    Google Scholar 

  3. Balzani, V., Gómez-López, M. & Stoddart, J. F. Molecular machines. Acc. Chem. Res. 31, 405–414 (1998).

    Article  CAS  Google Scholar 

  4. Sauvage, J.-P. Transition metal-containing rotaxanes and catenanes in motion: toward molecular machines and motors. Acc. Chem. Res. 31, 611–619 (1998).

    Article  CAS  Google Scholar 

  5. Gimzewski, J. Molecules, nanophysics and nanoelectronics. Phys. World 11, 29–33 (1998).

    Article  CAS  Google Scholar 

  6. Anelli, P. -L., Spencer, N. & Stoddart, J. F. A molecular shuttle. J. Am. Chem. Soc. 113, 5131–5133 ( 1991).

    Article  CAS  Google Scholar 

  7. Bissell, R. A., Córdova, E., Kaifer, A. E. & Stoddart, J. F. A chemically and electrochemically switchable molecular shuttle. Nature 369, 133–137 ( 1994).

    Article  ADS  CAS  Google Scholar 

  8. Collin, J. -P., Gavinã, P. & Sauvage, J.-P. Electrochemically induced molecular motions in copper-complexed threaded systems: From the unstoppered compound to the semi-rotaxane and the fully blocked rotaxane. New J. Chem. 21, 525–528 (1996).

    Google Scholar 

  9. Lane, A. S., Leigh, D. A. & Murphy, A. Peptide-based molecular shuttles. J. Am. Chem. Soc. 119, 11092–11093 (1997).

    Article  CAS  Google Scholar 

  10. Murakami, H., Kawabuchi, A., Kotoo, K., Kunitake, M. & Nakashima, N. A light-driven molecular shuttle based on a rotaxane. J. Am. Chem. Soc. 119, 7605– 7606 (1997).

    Article  CAS  Google Scholar 

  11. Kelly, T. R. et al. A molecular brake. J. Am. Chem. Soc. 116, 3657–3658 (1994).

    Article  CAS  Google Scholar 

  12. Kelly, T. R., Tellitu, I. & Sestelo, J. P. In search of molecular ratchets. Angew. Chem. Int. Edn Engl. 36, 1866–1868 (1997).

    Article  CAS  Google Scholar 

  13. Davis, A. P. Tilting at windmills? The second law survives. Angew. Chem. Int. Edn Engl. 37, 909–910 ( 1998).

    Article  ADS  CAS  Google Scholar 

  14. Bedard, T. C. & Moore, J. S. Design and synthesis of a “molecular turnstile”. J. Am. Chem. Soc. 117, 10662–10671 (1995).

    Article  CAS  Google Scholar 

  15. Kelly, T. R., De Silva, H. & Silva, R. A. Unidirectional rotary motion in a molecular system. Nature 401, 150–152 (1999).

    Article  ADS  CAS  Google Scholar 

  16. Koumura, N., Zijlstra, R. W. J., van Delden, R. A., Harada, N. & Feringa, B. L. Light-driven monodirectional molecular rotor. Nature 401, 152– 155 (1999).

    Article  ADS  CAS  Google Scholar 

  17. Barthel, J., Bachhuber, K., Buchner, R. & Hetzenauer, H. Dielectric spectra of some common solvents in the microwave region - water and lower alcohols. Chem. Phys. Lett. 165, 369–373 (1990).

    Article  ADS  CAS  Google Scholar 

  18. Castner, E. W., Chang, Y. J., Chu, Y. C. & Walrafen, G. E. The intermolecular dynamics of liquid water. J. Chem. Phys. 102, 653–659 (1995).

    Article  ADS  CAS  Google Scholar 

  19. Cook, D. J., Chen, J. X., Morlino, E. A. & Hochstrasser, R. M. Terahertz-field-induced second-harmonic generation measurements of liquid dynamics. Chem. Phys. Lett. 309, 221– 228 (1999).

    Article  ADS  CAS  Google Scholar 

  20. Kapitulnik, A., Casalnuovo, S., Lim, K. C. & Heeger, A. J. Electric-field coupling to slow elastic modes in gels of conjugated polymers. Phys. Rev. Lett. 53, 469– 472 (1984).

    Article  ADS  CAS  Google Scholar 

  21. Lim, K. C., Kapitulnik, A., Zacher, R. & Heeger, A. J. Conformation of polydiacetylene macromolecules in solution: Field-induced birefringence and rotational diffusion constant. J. Chem. Phys. 82, 516–521 ( 1985).

    Article  ADS  CAS  Google Scholar 

  22. Sauvage, J. -P. & Dietrich-Buchecker, C. O. (eds) Molecular Catenanes, Rotaxanes and Knots (Wiley-VCH, Weiheim, 1999).

    Book  Google Scholar 

  23. Leigh, D. A., Murphy, A., Smart, J. P. & Slawin, A. M. Z. Glycylglycine rotaxanes – the hydrogen bond directed assembly of synthetic peptide rotaxanes. Angew. Chem. Int. Edn Engl. 36, 728–732 (1997).

    Article  CAS  Google Scholar 

  24. Kippelen, B., Sandalphon, Meerholz, K. & Peyghambarian, N. Birefringence, Pockels, and Kerr effects in photorefractive polymers. Appl. Phys. Lett. 68, 1748–1750 ( 1996).

    Article  ADS  CAS  Google Scholar 

  25. Buckingham, A. D. in Molecular Electro-optics (ed. O'Konski, C. T.) 7– 62 (Marcel Dekker, New York, 1976).

    Google Scholar 

  26. Sandström, J. Dynamic NMR Spectroscopy (Academic, London, 1982).

    Google Scholar 

  27. Dahlquist, F. W., Longmur, K. J. & Du Vernet, R. B. Direct observation of chemical exchange by a selective pulse NMR technique. J. Magn. Reson. 17, 406–410 (1975).

    ADS  CAS  Google Scholar 

  28. Leigh, D. A., Murphy, A., Smart, J. P., Deleuze, M. S. & Zerbetto, F. Controlling the frequency of macrocyclic ring rotation in benzylic amide [2]catenanes. J. Am. Chem. Soc. 120 , 6458–6467 (1998).

    Article  CAS  Google Scholar 

  29. Allinger, N. L., Yuh, Y. H. & Lii, J.-H. Molecular mechanics. The MM3 force field for hydrocarbons. 1. J. Am. Chem. Soc. 111, 8551– 8582 (1989).

    Article  CAS  Google Scholar 

  30. Ponder, J. W. & Richards, F. M. An efficient Newton-like method for molecular mechanics energy minimization of large molecules. J. Comp. Chem. 8, 1016–1024 (1987).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L Joubert for his assistance in producing the visual representations of the rotaxane dynamics. This work was supported through the DRUM TMR network. F.Z. acknowledges support from the MURST project “Dispositivi Supramolecolari”. D.A.L. is an EPSRC Advanced Research Fellow; F.G.G. is a Marie Curie Research Fellow. The Warwick group were responsible for the synthesis and NMR experiments, the Bologna group the simulations, and the Paris group the Kerr effect measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Leigh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bermudez, V., Capron, N., Gase, T. et al. Influencing intramolecular motion with an alternating electric field . Nature 406, 608–611 (2000). https://doi.org/10.1038/35020531

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35020531

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing