Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Importance of continental margins in the marine biogeochemical cycling of carbon and nitrogen

Abstract

THE continental margins occupy less than 20% of the surface area of the world ocean, and it is widely assumed that they do not play a significant part in the oceanic biogeochemical cycles of carbon and nitrogen. Data from 32 sediment-trap moorings, 16 in the deep sea and 16 on the continental slope1, suggest that at an average depth of 2,650 m on the slope, the combined rain of surviving shelf and slope particles yields a mean carbon flux of 6.9 g C m−2 yr−1—about ten times that at the same average depth in the deep sea (0.8 g C m−2 yr−1). Because the area of the deep sea is about ten times greater than that of the continental slopes, using the sediment-trap data and assuming a carbon/nitrogen ratio of 5:1, the equivalent total particulate offshore nitrogen loss is 0.5 × 1014 g N yr−1 at 2,650 m. If these trap observations are generally representative of the oceans and continental margins, then the supply of dissolved nitrate to the overlying euphotic zones should also be similar. Here I provide an independent estimate of the annual supply of onwelling nitrate from the deep sea to the shelves and find that it may balance the offshore flux of carbon, suggesting that the continental margins and deep sea are equally important in the carbon and nitrogen biogeochemical cycles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Walsh, J. J., Dieterle, D. A. & Pribble, J. R. Deep Sea Res. (in the press).

  2. Biscaye, P. E., Anderson, R. F. & Deck, R. L. Cont. Shelf Res. 8, 885–904 (1988).

    Article  ADS  Google Scholar 

  3. Jackson, G. A. et al. Eos 70, 146–155 (1989).

    Article  ADS  Google Scholar 

  4. Honjo, S., Manganini, S. J. & Cole, J. J. Deep Sea Res. 26, 609–625 (1982).

    Article  ADS  Google Scholar 

  5. Eppley, R. W. & Peterson, B. J. Nature 282, 677–680 (1979).

    Article  ADS  Google Scholar 

  6. Walsh, J. J. Limnol. Oceanogr. 21, 1–13 (1976).

    Article  ADS  Google Scholar 

  7. Bailey, G. W. & Chapman, P. in South African Ocean Colour and Upwelling Experiment (ed. Shannon, L. W.) 125–146 (Sea Fish. Res. Inst., Cape Town, 1985).

    Google Scholar 

  8. Walsh, J. J. et al. Deep Sea Res. 27, 1–27 (1980).

    Article  ADS  Google Scholar 

  9. McGill, D. A. in The Biology of the Indian Ocean (Ed. Zeitzschel, B.) 53–102 (Springer, Berlin, 1973).

    Book  Google Scholar 

  10. Codispoti, L. A. & Friederich, G. E. Deep Sea Res. 25, 751–770 (1978).

    Article  ADS  Google Scholar 

  11. Smith, R. L. in Coastal Upwelling (ed. Richards, F. A.) 107–118 (American Geophysical Union, Washington, DC, 1980).

    Google Scholar 

  12. Walsh, J. J. On the Nature of Continental Shelves (Academic, New York, 1988).

    Google Scholar 

  13. Lee, T. N., Atkinson, L. P. & Legeckis, R. Deep Sea Res. 28, 347–378 (1981).

    Article  ADS  CAS  Google Scholar 

  14. Hogetsu, K. & Taga, N. in Productivity of Biocenoses in Coastal Regimes of Japan (eds Hogetsu, K., Hatanaka, M., Hanaoka, T. & Kawamura, T.) 31–172 (University of Tokyo, 1977).

    Google Scholar 

  15. Walsh, J. J., Dieterle, D. A., Meyers, M. B. & Muller-Karger, F. E. Prog. Oceanogr. 23, 245–301 (1989).

    Article  ADS  Google Scholar 

  16. Eisman, D. & Van Bennekom, A. J. Hydrol. Newsl. Spec. Publ. 6, 25–48 (1971).

    Google Scholar 

  17. Lee, T. N. & Pietrafesa, L. J. Prog. Oceanogr. 19, 267–312 (1987).

    Article  ADS  Google Scholar 

  18. Brockman, U., Billen, G. & Gieskes, W. W. in Polution of the North Sea (eds Salomons, W., Bayne, B. L., Duursma, E. K. & Forstner, U.) 348–389 (Springer, Berlin, 1988).

    Google Scholar 

  19. Takahashi, M. & Hori, T. Mar. Biol. 79, 177–186 (1984).

    Article  CAS  Google Scholar 

  20. Aagaard, K., Pease, C. H. & Salo, S. A. NOAA Tech. Mem. ERL PMEL-82, 1–171 (1988).

  21. Walsh, J. J. et al. Limnol. Oceanogr. 23, 659–683 (1978).

    Article  ADS  CAS  Google Scholar 

  22. Beardsley, R. C., Chapman, D. C., Brink, K. H., Ramp, S. R. & Schlitz, R. J. phys. Oceanogr. 15, 713–771 (1985).

    Article  ADS  Google Scholar 

  23. Richey, J. E., Brock, J. T., Naiman, R. J., Wissmar, R. C. & Stallard, R. F. Science 207, 1348–1351 (1980).

    Article  ADS  CAS  Google Scholar 

  24. Walsh, J. J., Rowe, G. T., Iverson, R. L. & McRoy, C. P. Nature 291, 196–201 (1981).

    Article  ADS  CAS  Google Scholar 

  25. Fanning, K. A. Nature 339, 460–463 (1989).

    Article  ADS  CAS  Google Scholar 

  26. Knap, A., Jickells, T., Pszenny, A. & Galloway, J. Nature 320, 158–160 (1986).

    Article  ADS  CAS  Google Scholar 

  27. Walsh, J. J. Bioscience 34, 499–507 (1984).

    Article  CAS  Google Scholar 

  28. Christensen, J. P., Murray, J. W., Devol, A. H. & Codispoti, L. A. Global biogeochem. Cycles 1, 97–116 (1987).

    Article  ADS  CAS  Google Scholar 

  29. Devol, A. H. Nature 349, 319–321 (1991).

    Article  ADS  CAS  Google Scholar 

  30. Suzuki, Y. & Tanoue, E. in Ocean Margin Processes in Global Change (eds Mantoura, R. F., Martin, J. M. & Wollast, R. F.) (Wiley, New York, in the press).

  31. Jahnke, R. A., Reimers, C. E. & Craven, D. B. Nature 348, 50–54 (1990).

    Article  ADS  CAS  Google Scholar 

  32. Emerson, S. et al. Nature 329, 51–53 (1987).

    Article  ADS  CAS  Google Scholar 

  33. Alldredge, A. L. & Gotschalk, C. C. Deep Sea Res. 36, 159–171 (1989).

    Article  ADS  CAS  Google Scholar 

  34. Wroblewski, J. S., Sarmiento, J. L. & Flierl, G. R. Global biogeochem. Cycles 2, 199–218 (1988).

    Article  ADS  Google Scholar 

  35. Eppley, R. W., Renger, E. H. & Harrison, W. G. Limnol. Oceanogr. 24, 483–494 (1979).

    Article  ADS  CAS  Google Scholar 

  36. King, F. D. & Devol, A. H. Limnol. Oceanogr. 24, 645–651 (1979).

    Article  ADS  CAS  Google Scholar 

  37. Bakun, A. Science 247, 198–201 (1990).

    Article  ADS  CAS  Google Scholar 

  38. Dietrich, G. General Oceanography Chart 4 (Wiley, New York, 1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walsh, J. Importance of continental margins in the marine biogeochemical cycling of carbon and nitrogen. Nature 350, 53–55 (1991). https://doi.org/10.1038/350053a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/350053a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing