Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure and bandgap closure in dense hydrogen

Abstract

The possibility that steadily compressed hydrogen might undergo a transition from a proton-paired insulator to a monatomic metal was first suggested in 1935 (ref. 1). But experimental realization of metallic hydrogen in solid form has remained elusive, despite studies at pressures as high as 342 GPa (ref. 2). The pairing structure is known to be robust (from the persistence of its associated vibron mode3), leading to the suggestion of an alternative route to the metallic state, involving a band-overlap transition in which the pairing is preserved4. Here we report density functional calculations within the local density approximation that predict a range of densities for hydrogen where a paired or molecular metallic state may be energetically preferred. The transition to this metallic state is naturally associated with the closing of an overall bandgap; but the pressures required to effect the transition are shown to change significantly when the gaps are corrected by approximate inclusion of many-electron effects. The implication is that a complete resolution of the structural and phase problem in dense hydrogen may require methods beyond the local density approximation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The principal orthorhombic structures found to be energetically competitive for static compressed hydrogen in paired form.
Figure 2: Enthalpy curves (relative to the monatomic diamond structure) as functions of (LDA) pressures for the molecular and monatomic structures studied.
Figure 3: Examples of bandgaps as a function of density for the mchp-c, Cmc21, and P21/c structures of dense hydrogen.

Similar content being viewed by others

References

  1. Wigner, E. & Huntington, H. B. On the possibility of a metallic modification of hydrogen. J. Chem. Phys. 3, 764–770 (1935).

    Article  ADS  CAS  Google Scholar 

  2. Narayana, C., Luo, H., Orloff, J. & Ruoff, A. L. Solid hydrogen at 342 GPa: no evidence for an alkali metal. Nature 393, 46–49 (1998).

    Article  ADS  CAS  Google Scholar 

  3. Hemley, R. J. & Mao, H. K. Phase transitions in solid molecular hydrogen at ultrahigh pressures. Phys. Rev. Lett. 61, 857–860 (1988).

    Article  ADS  CAS  Google Scholar 

  4. Barbee, T. W., Garcia, A., Cohen, M. L. & Martins, J. L. Theory of high-pressure phases of hydrogen. Phys. Rev. Lett. 62, 1150–1153 (1989).

    Article  ADS  CAS  Google Scholar 

  5. Kaxiras, E., Broughton, J. & Hemley, R. J. Onset of metallization and related transitions in solid hydrogen. Phys. Rev. Lett. 67, 1138–1141 (1991).

    Article  ADS  CAS  Google Scholar 

  6. Nagao, K., Nagara, H. & Matsubara, S. Structures of hydrogen at megabar pressures. Phys. Rev. B 56, 2295–2298 (1997).

    Article  ADS  CAS  Google Scholar 

  7. Mazin, I. I. & Cohen, R. E. Insulator-metal transition in solid hydrogen: implications of electronic-structure calculations for recent experiments. Phys. Rev. B 52, R8597–R8600 (1995).

    Article  ADS  CAS  Google Scholar 

  8. Edwards, B. & Ashcroft, N. W. Spontaneous polarization in dense hydrogen. Nature 388, 652–655 (1997).

    Article  ADS  CAS  Google Scholar 

  9. Edwards, B., Ashcroft, N. W. & Lenosky, T. Layering transitions and the structure of dense hydrogen. Europhys. Lett. 34, 519–524 (1996).

    Article  ADS  CAS  Google Scholar 

  10. Ceperley, D. M. & Alder, B. J. Ground state of solid hydrogen at high pressures. Phys. Rev. B 36, 2092–2106 (1987).

    Article  ADS  CAS  Google Scholar 

  11. Natoli, V., Martin, R. M. & Ceperley, D. M. Crystal structure of atomic hydrogen. Phys. Rev. Lett. 70, 1952–1955 (1993); Crystal structure of molecular hydrogen at high pressures. Phys. Rev. Lett. 74, 1601–1604 (1995).

    Article  ADS  CAS  Google Scholar 

  12. Kohanoff, J., Scandolo, S., Chiarotti, G. L. & Tosatti, E. Solid molecular hydrogen: the broken symmetry phase. Phys. Rev. Lett. 78, 2783–2786 (1997).

    Article  ADS  CAS  Google Scholar 

  13. Hanfland, M., Hemley, R. J. & Mao, H. Novel infrared vibron absorption of solid hydrogen at megabar pressures. Phys. Rev. Lett. 70, 3760–3763 (1993).

    Article  ADS  CAS  Google Scholar 

  14. Eggert, E. H. et al. Absorption and reflectance in hydrogen up to 230 GPa: implications for metallization. Phys. Rev. Lett. 66, 193–196 (1991).

    Article  ADS  CAS  Google Scholar 

  15. Edwards, B. Solid Hydrogen at High Pressures. Thesis, Cornell Univ. (1997).

    Google Scholar 

  16. Mazin, I. I., Hemley, R. J., Goncharov, A. F., Hanfland, M. & Mao, H.-K. Quantum and classical orientational ordering in solid hydrogen. Phys. Rev. Lett. 78, 1066–1069 (1997).

    Article  ADS  CAS  Google Scholar 

  17. Kohanoff, J., Scardalo, S., de Gironcoli, S. & Tosatti, E. Dipole-quadrupole interactions and the nature of Phase III of compressed hydrogen. Phys. Rev. Lett. 83, 4097–4100 (1999).

    Article  ADS  CAS  Google Scholar 

  18. Loubeyre, P. et al. X-ray diffraction and equation of state of hydrogen at megabar pressures. Nature 383, 702–704 (1996).

    Article  ADS  CAS  Google Scholar 

  19. Evans, W. J. & Silvera, I. F. Index of refraction, polarizability, and equation of state of solid molecular hydrogen. Phys. Rev. B 57, 14105–14109 (1998).

    Article  ADS  CAS  Google Scholar 

  20. Hedin, L. New method for calculating the one-particle Green's function and application to the electron-gas problem. Phys. Rev. 139, A796–A823 (1965).

    Article  ADS  Google Scholar 

  21. Chacham, H. & Louie, S. G. Metallization of solid hydrogen at megabar pressures; a first-principles quasi particle study. Phys. Rev. Lett. 66, 64–67 (1991).

    Article  ADS  CAS  Google Scholar 

  22. Johnson, K. A. & Ashcroft, N. W. Corrections to density-functional theory band gaps. Phys. Rev. B 58, 15548–15546 (1998).

    Article  ADS  CAS  Google Scholar 

  23. Sterne, P. A. & Inkson, J. C. Exchange-correlation potential in semi-conductors and insulators. J. Phys. C 17, 1497–1510 (1984).

    Article  ADS  CAS  Google Scholar 

  24. Ruoff, A. L. & Ghandehari, K. The refractive index of hydrogen as a function of pressure. Mod. Phys. Lett. B 7, 907–911 (1993).

    Article  ADS  CAS  Google Scholar 

  25. Hemley, J. R., Hanfland, M. & Mao, H. K. High pressure dielectric measurements of solid hydrogen to 170 GPa. Nature 350, 488–491 (1991).

    Article  ADS  CAS  Google Scholar 

  26. Straus, D. M. & Ashcroft, N. W. Self-consistent structure of metallic hydrogen. Phys. Rev. Lett. 38, 415–418 (1997).

    Article  ADS  Google Scholar 

  27. Richardson, C. F. & Ashcroft, N. W. High temperature superconductivity in metallic hydrogen; electron-electron enhancements. Phys. Rev. Lett. 78, 118–121 (1997).

    Article  ADS  CAS  Google Scholar 

  28. Kresse, G. & Hafner, J. Efficient iterative schemes for ab initio total energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  ADS  CAS  Google Scholar 

  29. Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892–7895 (1990).

    Article  ADS  CAS  Google Scholar 

  30. Johnson, K. Electronic Structure, Band-gaps, and the Insulator-metal Transition in Solid Hydrogen. Thesis, Cornell Univ. (1998).

    Google Scholar 

Download references

Acknowledgements

The results we report here were obtained using both the Vienna Ab-Initio Simulation Package authored by G. Kresse, J. Furthmüller and J. Hafner and the Corning Planewave code made available by M. Teter. We thank the Cornell Center for Materials Research for computing facilities. This work was supported by the US NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. W. Ashcroft.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, K., Ashcroft, N. Structure and bandgap closure in dense hydrogen. Nature 403, 632–635 (2000). https://doi.org/10.1038/35001024

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35001024

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing