Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Lidar detection of leads in Arctic sea ice

Abstract

REMOTE sensing using an airborne infrared lidar1 has shown an unexpected capability to detect open leads (linear openings) in Arctic sea ice and their associated meteorology in winter. Here we show that vertical profiles of backscattered radiation demonstrate strong returns from hydrometeor plumes originating from leads having a surface water temperature near –1.8 °C. Recently refrozen leads are also distinguishable by the lidar backscatter from adjacent thicker, older sea ice. Wide leads release enough energy to create buoyant plumes which penetrate the Arctic boundary layer inversion, transporting heat and moisture into the troposphere. These results show that the role of the Arctic as a global heat sink may need to be re-evaluated, and that lead plumes have a significant effect on the radiation budget.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Uthe, E. E., Morley, B. M. & Nielsen, N. B. Appl. Opt. 21, 460–463 (1982).

    Article  ADS  CAS  Google Scholar 

  2. Kent, G. S., Poole, L. R. & McCormick, M. P. J. atmos Sci. 43, 2149–2166 (1986)

    Article  ADS  Google Scholar 

  3. Schnell, R. C. Arctic Res. 2, 39–41. 1988.

    Google Scholar 

  4. Hobbs, P. V. & Rango, A. L. J. atmos. Sci. 42, 2523–2549 (1985)

    Article  ADS  Google Scholar 

  5. Radke, L. F., Brock, C. A., Lyons, J. H., Hobbs, P. V. & Schnell, R. C. J. atmos. Chem. (in the press)

  6. Andreas, E. L. Williams, R. M. & Paulson, C. A. Q. J. R. met. Soc. 107, 437–460 (1981)

    Article  ADS  Google Scholar 

  7. Mason, B. J. The Physics of Clouds 2nd edn, 171–172 (Clarendon, Oxford. 1971).

    Google Scholar 

  8. Wadhams, P. Phil. Trans. R. Soc. Lond. A302, 45–85 (1981).

    Article  ADS  Google Scholar 

  9. Badgley, F. I. Proc. Symp. Arctic Heat Budget and Atmospheric Circulation 267–277 (Rand Corporation, Santa Monica, 1966).

    Google Scholar 

  10. Andreas, E. L. Mon. Weath. Rev. 108, 2057–2063 (1980)

    Article  ADS  Google Scholar 

  11. Maykut, G. A. J. geophys. Res. 87, 7971–7984 (1982)

    Article  ADS  Google Scholar 

  12. Makshtas, A. P. The Heat Budget of Arctic ice in the Winter, (ed. Andreas. E. L. ) (National Science Foundation, Division of Polar Programs. Washington, DC, in the press).

  13. Ledley, T. S. J. geophys. Res. 93, 15919–15932 (1988)

    Article  ADS  Google Scholar 

  14. Andreas, E. L., Paulson, C. A., Williams, R. M. Lindsay, R. W. & Businger, J. A. Bound. Layer Met. 17, 57–91 (1979).

    Article  ADS  Google Scholar 

  15. Smith, S. D., Anderson, R. J., den hartog, G., Topham, D. R. & Perkin, R. G. J. geophys. Res. 88, 2900–2910(1983).

    Article  ADS  Google Scholar 

  16. Andreas, E. L. CRREL Rep 82-12 (US Army Cold Regions Research and Engineering Laboratory, Hanover, 1982).

  17. Andreas, E. L. & Murphy, B. J. phys. Oceanogr. 16, 1875–1883 (1986)

    Article  ADS  Google Scholar 

  18. Curry, J. A., Radke, L. F., Brock, C. A. & Ebert, E. E., Symp. Role of Clouds in Air Chemistry and Global Climate 114–117 (American Meteorological Society, Boston, 1989).

    Google Scholar 

  19. Barry, R. G., Miles, M. W., Cianflone, R. C., Scharfen, G. & Schnell, R. C. Ann. Glaciol. 12, 9–15 (1989).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schnell, R., Barry, R., Miles, M. et al. Lidar detection of leads in Arctic sea ice. Nature 339, 530–532 (1989). https://doi.org/10.1038/339530a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/339530a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing