Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Inhibition of NF-κB activity results in disruption of the apical ectodermal ridge and aberrant limb morphogenesis

Abstract

In Drosophila, the Dorsal protein establishes the embryonic dorso–ventral axis during development1. Here we show that the vertebrate homologue of Dorsal, nuclear factor-kappa B (NF-κB), is vital for the formation of the proximo–distal organizer of the developing limb bud, the apical ectodermal ridge (AER). Transcription of the NF-κB proto-oncogene c-rel is regulated, in part, during morphogenesis of the limb bud by AER-derived signals such as fibroblast growth factors. Interruption of NF-κB activity using viral-mediated delivery of an inhibitor results in a highly dysmorphic AER, reduction in overall limb size, loss of distal elements and reversal in the direction of limb outgrowth. Furthermore, inhibition of NF-κB activity in limb mesenchyme leads to a reduction in expression of Sonic hedgehog and Twist but derepresses expression of the bone morphogenetic protein-4 gene. These results are the first evidence that vertebrate NF-κB proteins act to transmit growth factor signals between the ectoderm and the underlying mesenchyme during embryonic limb formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: c-rel mRNA is expressed in discrete spatial and temporal patterns directed by AER-derived signals.
Figure 2: Sequestration of NF-κB activity leads to a reduction in limb outgrowth along both the proximo–distal and the antero–posterior axes.
Figure 3: Sequestration of NF-κB leads to a dysmorphic limb.
Figure 4: Inhibition of NF-κB activity results in a dysmorphic AER.
Figure 5: Inhibition of NF-κB activity leads to a reduction of Shh and Twist mRNA expression while derepressing BMP -4 gene expression.

Similar content being viewed by others

References

  1. Nüsslein-Volhard, C., Lohs-Schardin, M., Sander, K. & Cremer, C. Adorso-ventral shift of embryonic primordia in a new maternal-effect mutant of Drosophila. Nature 283, 474–476 (1980).

    Article  ADS  PubMed  Google Scholar 

  2. Hamburger, V. & Hamilton, H. L. Aseries of normal stages in the development of the chick embryo. J.Exp. Morphol. 88, 49–92 (1951).

    Article  CAS  Google Scholar 

  3. Summerbell, D. Aquantitative analysis of the effect of the excision of the AER from the chick limb bud. J. Embryol. Exp. Morphol. 32, 651–660 (1974).

    CAS  PubMed  Google Scholar 

  4. Fallon, J. F.et al. FGF-2: apical ectodermal ridge growth signal for chick limb bud development. Science 264, 104–107 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Niswander, L., Tickle, C., Vogel, A., Booth, I. & Martin, G. R. FGF-4 replaces the apical ectodermal ridge and directs outgrowth and patterning of the limb. Cell 75, 579–587 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Vogel, A., Rodriguez, C. & Izpisua-Belmonte, J. C. Involvement of FGF-8 in initiation, outgrowth and patterning of the vertebrate limb. Development 122, 1737–1750 (1996).

    CAS  PubMed  Google Scholar 

  7. Crossley, P. H., Minowada, G., MacArthur, C. A. & Martin, G. R. Roles for FGF8 in the induction, initiation and maintenance of chick limb development. Cell 84, 127–136 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Inoue, J.-i.et al. Direct association of pp40/IκBβ with rel/NF-κB transcription factors: role of ankyrin repeats in the inhibition of DNA binding activity. Proc. Natl Acad. Sci. USA 89, 4333–4337 (1992).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brockman, J. A.et al. Coupling of a signal response domain in IκBα to multiple pathways for NF-κB activation. Mol. Cell. Biol. 15, 2809–2818 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Treanckner, E. B.-M.et al. Phosphorylation of human IκB-α on serines 32 and 36 controls IκB-α proteolysis and NF-κB activation in response to diverse stimuli. EMBO J. 14, 2876–2883 (1995).

    Article  Google Scholar 

  11. Grumont, R. J., Richardson, I. B., Gaff, C. & Berondakis, S. Rel/NF-κB nuclear complexes that bind κB sites in the murine c-rel promoter are required for constitutive c-rel transcription in B cells. Cell Growth Differ. 4, 731–743 (1993).

    CAS  PubMed  Google Scholar 

  12. Laufer, E., Nelson, C. E., Johnson, R. L., Morgan, B. A. & Tabin, C. Sonic hedgehog and FGF-4 act through a signaling cascade and feedback loop to integrate growth and patterning of the developing limb bud. Cell 79, 993–1003 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Niswander, L., Jeffrey, S., Martin, G. R. & Tickle, C. Apositive feedback loop coordinates growth and patterning in the vertebrate limb. Nature 371, 609–612 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Jiang, J., Kosman, D., Ip, Y. T. & Levine, M. The dorsal morphogen gradient regulates the mesoderm determinant twist in early Drosophila embryos. Genes Dev. 5, 1881–1891 (1991).

    Article  CAS  PubMed  Google Scholar 

  15. Pan, D., Huang, J.-D. & Courey, A. J. Functional analysis of the Drosophila twist promoter reveals a dorsal -binding ventral activator region. Genes Dev. 5, 1892–1901 (1991).

    Article  CAS  PubMed  Google Scholar 

  16. Huang, J. D., Schwyter, D. H., Shirokawa, J. M. & Courey, A. J. The interplay between multiple enhancer and silencer elements defines the pattern of decapentaplegic expression. Genes Dev. 7, 694–704 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Schwyter, D. H., Huang, J. D., Dubnicoff, T. & Courey, A. J. The decapentaplegic promoter region plays an integral role in the spatial control of transcription. Mol. Cell. Biol. 15, 3960–3968 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gitelman, I. Twist protein in mouse embryogenesis. Dev. Biol. 189, 205–214 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Winnier, G., Blessing, M., Labosky, P. A. & Hogan, B. L. Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev. 9, 2105–2116 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Yokouchi, Y.et al. BMP-2/-4 mediate programmed cell death in chicken limb buds. Development 122, 3725–3734 (1996).

    CAS  PubMed  Google Scholar 

  21. Duprez, D.et al. Overexpression of BMP-2 and BMP-4 alters the size and shape of developing skeletal elements in the chick limb. Mech. Dev. 57, 145–157 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Saunders, J. W. Jr & Gasseling, M. T. in Epithelial-Mesenchymal Interaction(eds Fleischmayer, R. & Billingham, R. E.) 78–97 (Williams and Wilkins, Boston, (1968).

    Google Scholar 

  23. Ros, M., Lyons, G. & Fallon, J. Spatial and temporal analysis of homeobox genes expressed in chick limb buds by whole mount in situ hybridization. Prog. Clin. Biol. Res. 383A, 79–87 (1993).

    CAS  PubMed  Google Scholar 

  24. Echelard, Y.et al. Sonic hedgehog, a member of a family of putative signalling molecules, is implicated in the regulation of CNS parity. Cell 75, 1417–1430 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Winnier, G. E., Hargett, L. & Hogan, B. L. The winged helix transcription factor MFH1 is required for proliferation and patterning of paraxial mesoderm in the mouse embryo. Genes Dev. 11, 926–940 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Wall, N. A. & Hogan, B. L. Expression of bone morphogenetic protein-4 (BMP-4), bone morphogenetic protein-7 (BMP-7), fibroblast growth factor-8 (FGF-8) and sonic hedgehog (SHH) during branchial arch development in the chick. Mech. Dev. 53, 383–392 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Hughes, S. H., Greenhouse, J. J., Petropoulos, C. J. & Sutrave, P. Adaptor plasmids simplify the insertion of foreign DNA into helper-independent retroviral vectors. J. Virol. 61, 3004–3012 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Morgan, B. A. & Fekete, D. M. Manipulating gene expression with replication-competent retroviruses. Methods Cell Biol. 51, 185–218 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Becker, T. C.et al. Use of recombinant adenovirus for metabolic engineering of mammalian cells. Methods Cell Biol. 43, 161–176 (1994).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank B. L. M. Hogan, J. Barnett, C. Wright, D. Bader, L. Rollins-Smith, and members of the Kerr laboratory for helpful discussions and critical review of this manuscript. A.McMahon for avian Shh cDNA; B. Hogan for the M-Twist and Bmp-4 cDNA; C. B. Newgard for the adenoviral shuttle and wild-type vectors; S. Hughes for RCAS-BP(A) and RCAS-AlkPhos vectors; C.McCarther for the Fgf-8 cDNA; C. Tabin for cHoxA and cHoxD cDNA series. This work was supported by an NIH grant, the American Cancer Society, and gene therapy pilot funds from the Vanderbilt Cancer Center Grant and MSKCC Support Grant. P.B.B.is a predoctoral fellow supported by an NIH training grant. L.D.K. is a recipient of an ACS Junior Faculty Research Award and a Cancer Research Institute Investigator Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence D. Kerr.

Supplementary information

Supplementary Information

Supplementary Information

Supplementary information

Supplementary Information

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bushdid, P., Brantley, D., Yull, F. et al. Inhibition of NF-κB activity results in disruption of the apical ectodermal ridge and aberrant limb morphogenesis. Nature 392, 615–618 (1998). https://doi.org/10.1038/33435

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/33435

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing