Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Persistent, directional motility of cells and cytoplasmic fragments in the absence of microtubules

Abstract

Directional cell locomotion is displayed by many cell types both in vivo and in vitro1. In many instances, persistency and directionality are imposed by external stimuli such as chemical attractants or substrate properties2–6. Some cell types, such as fibroblasts or leukocytes, are capable of migrating in the absence of known stimuli in a pattern known as persistent random walk7, where the direction of movement is maintained for at least one cell diameter before the cell performs a sudden directional change. In many examples of persistent motility, microtubules are believed to have a key role as elements that stabilize or even determine a cell's direction of movement8–11. If disassembled, persistency is reduced or impaired12–15. Despite some reports to the contrary16–18, these and other observations have led to the widely accepted view that microtubules may be the overall organizers of cell geometry, polarity and motile activity19. Here we report that rapid, directional locomotion of fish epidermal keratocytes is independent of the presence of microtubules. Moreover, small cytoplasmic fragments derived from the anterior lamella of these cells are capable of locomoting in a pattern indistinguishable from that of intact cells. Since these fragments contain no nucleus, microtubules or centrioles, the persistency-determining component must be sought in some other component(s) of the cytoplasm, possibly the motile machinery of the lamella itself.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Trinkaus, J. P. in The Cell Surface in Animal Embryogenesis and Development (eds Poste, G. & Nicholson, G. L.) 225–329 (Eisevier, Amsterdam, 1976).

    Google Scholar 

  2. Zigmond, S. H. J. Cell Biol. 77, 269–287 (1978).

    Article  CAS  Google Scholar 

  3. Carter, S. B. Nature 208, 1183–1190 (1965).

    Article  ADS  CAS  Google Scholar 

  4. Dunn, G. A. & Heath, J. P. Expl Cell Res. 101, 1–14 (1976).

    Article  ADS  CAS  Google Scholar 

  5. Gerisch, G. et al. in Development and Differentiation in the Cellular Slime Molds (eds Cappuccinelli, R. & Ashworth, J. M.) 105–124 (Elsevier, Amsterdam, 1977).

    Book  Google Scholar 

  6. Bray, D. in Cell Behaviour (eds Bellairs, R., Curtis, A. & Dunn, G.) 299–317 (Cambridge University Press, 1982).

    Google Scholar 

  7. Gail, M. H. & Boone, C. Biophys. J. 10, 980–993 (1970).

    Article  ADS  CAS  Google Scholar 

  8. Malech, H. L., Root, R. K. & Gallin, J. I. J. Cell Biol. 75, 666–693 (1977).

    Article  CAS  Google Scholar 

  9. Albrecht-Buehler, G. Cell 12, 333–342 (1977).

    Article  CAS  Google Scholar 

  10. Albrecht-Buehler, G. Cell Motility 1, 237–245 (1981).

    Article  CAS  Google Scholar 

  11. Gotlieb, A. I., McBurnie May, L., Subrahmanyan, L. & Kalnins, V. I. J. Cell Biol. 91, 589–594 (1981)..

    Article  CAS  Google Scholar 

  12. Goldman, R. D. J. Cell Biol. 51, 752–767 (1971).

    Article  CAS  Google Scholar 

  13. Vasiliev, J. M. & Gelfand, I. M. in Cell Motility (eds Goldman, R. D., Pollard, T. D. & Rosenbaum, J. L.) 279–304 (Cold Spring Harbor Laboratory, New York, 1976).

    Google Scholar 

  14. Zigmond, S. H. J. Cell Biol. 75, 606–616 (1977).

    Article  CAS  Google Scholar 

  15. Gotlieb, A. I., Subrahmanyan, L. & Kalnins, V.I. J. Cell Biol. 96, 1266–1272 (1983).

    Article  CAS  Google Scholar 

  16. Dipasquale, A. Expl Cell Res. 95, 425–439 (1975).

    Article  CAS  Google Scholar 

  17. Dunlap, M. K. & Donaldson, D. J. Expl Cell Res. 116, 15–19 (1978).

    Article  CAS  Google Scholar 

  18. Rich, A. M. & Hoffstein, S. T. J. Cell Sci. 48, 181–191 (1981).

    CAS  PubMed  Google Scholar 

  19. Alberts, B. et al. Molecular Biology of the Cell, 600–601 (Garland, New York, 1983).

    Google Scholar 

  20. Henrikson, R. C. & Matoltsy, A. G. J Ultrastruct. Res. 21, 194–205 (1968).

    Article  Google Scholar 

  21. Schliwa, M. J. Ultrastruct. Res. 52, 377–386 (1975).

    Article  CAS  Google Scholar 

  22. Goodrich, H. B. Biol. Bull. 46, 252–262 (1924).

    Article  Google Scholar 

  23. Radice, G. P. J. Cell Sci. 44, 201–223 (1980).

    CAS  PubMed  Google Scholar 

  24. Bereiter-Hahn, J., Strohmeier, R., Kunzenbacher, I., Beck, k. & Voth, M. J. Cell Sci. 52, 289–311 (1981).

    CAS  PubMed  Google Scholar 

  25. Kunzenbacher, I., Bereiter-Hahn, J., Osborn, M. & Weber, K. Cell Tissue Res. 222, 445–457 (1982).

    Article  CAS  Google Scholar 

  26. Keller, H. U. & Bessis, M. Nature 258, 723–724 (1975).

    Article  ADS  CAS  Google Scholar 

  27. Goldstein, L., Cailleau, R. & Crocker, T.T. Expl Cell Res. 19, 332–342 (1960).

    Article  CAS  Google Scholar 

  28. Kalisz, B. & Korohoda, W. Acta protozool. 15, 345–357 (1976).

    Google Scholar 

  29. Shaw, G. & Bray, D. Expl Cell Res. 104, 55–62 (1977).

    Article  CAS  Google Scholar 

  30. Albrecht-Buehler, G. Proc. natn. Acad. Sci. U.S.A. 77, 6639–6643 (1980).

    Article  ADS  CAS  Google Scholar 

  31. Swanson, J. A. & Taylor, D. L. Cell 28, 225–232 (1982).

    Article  CAS  Google Scholar 

  32. Schliwa, M. & van Blerkom, J. J. Cell Biol. 90, 222–235 (1981).

    Article  CAS  Google Scholar 

  33. Weber, K., Rathke, P. & Osborn, M. Proc. natn. Acad. Sci. U.S.A. 75, 1820–1824 (1978).

    Article  ADS  CAS  Google Scholar 

  34. Wulf, E., Deboben, A., Bautz, F. A., Faustich, H. & Wieland, T. Proc. natn. Acad. Sci U.S.A. 76, 4498–4502 (1979).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Euteneuer, U., Schliwa, M. Persistent, directional motility of cells and cytoplasmic fragments in the absence of microtubules. Nature 310, 58–61 (1984). https://doi.org/10.1038/310058a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/310058a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing