Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Prenatal development of individual retinogeniculate axons during the period of segregation

Abstract

When connections are first formed during the development of the vertebrate nervous system, inputs from different sources are frequently intermixed and the specific adult pattern then emerges as the different inputs segregate from each other1–11. During the prenatal development of connections between retina and lateral geniculate nucleus (LGN) in the cat, the projections from the two eyes initially overlap with each other within the LGN. Over the next 3 weeks a reduction in the amount of overlap occurs so that by birth, a segregated pattern similar to the adult is present9. We report here that during the period of overlap, individual retinogeniculate axons are simple in shape and restricted in extent without any widespread branches. Further, the appearance of the segregated pattern of eye input is accompanied by the elaboration of extensive new axonal arbors within appropriate LGN territory accompanied by retraction of only a limited number of minor branches. This developmental strategy contrasts with that in other regions of the vertebrate central nervous system in which the orderly adult pattern of connections within a target is achieved by a relative reduction in the overall extent of the axon arbor5,12,13.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Brown, M. C., Jansen, J. K. S. & Van Essen, D. J. Physiol., Lond. 261, 387–422 (1976).

    Article  CAS  Google Scholar 

  2. Rakic, P. Nature 261, 467–471 (1976).

    Article  ADS  CAS  Google Scholar 

  3. LeVay, S., Stryker, M. P. & Shatz, C. J. J. comp. Neurol. 179, 223–244 (1978).

    Article  CAS  Google Scholar 

  4. Mariani, J. & Changeux, J.-P. J. Neurosci. 1, 696–702 (1981).

    Article  CAS  Google Scholar 

  5. Jackson, H. & Parks, T. N. J. Neurosci. 2, 1736–1743 (1982).

    Article  CAS  Google Scholar 

  6. Purves, D. & Lichtman, J. W. Science 210, 153–157 (1980).

    Article  ADS  CAS  Google Scholar 

  7. Williams, R. W. & Chalupa, L. M. J. Neurosci. 2, 604–622 (1982).

    Article  CAS  Google Scholar 

  8. Linden, D. C., Guillery, R. W. & Cucchiaro, J. J. comp. Neurol. 203, 189–211 (1981).

    Article  CAS  Google Scholar 

  9. Shatz, C. J. J. Neurosci. 3, 482–499 (1983).

    Article  CAS  Google Scholar 

  10. Bunt, S. M., Lund, R. D. & Land, P. W. Devl. Brain Res. 6, 149–168 (1983).

    Article  Google Scholar 

  11. Shatz, C. J. & Kirkwood, P. A. J. Neurosci. (in the press).

  12. LeVay, S. & Stryker, M. P. in Soc. Neurosci. Symp. Vol. 4 (ed. Ferendelli, J.) 83–98 (Bethesda, 1979).

    Google Scholar 

  13. Constantine-Paton, M., Pitts, E. C. & Reh, T. A. J. comp. Neurol. 218, 297–313 (1983).

    Article  CAS  Google Scholar 

  14. Adams, J. C. J. histochem. Cytochem. 29, 775 (1981).

    Article  CAS  Google Scholar 

  15. Walsh, C., Polley, E. H., Hickey, T. L. & Guillery, R. W. Nature 302, 611–614 (1983).

    Article  ADS  CAS  Google Scholar 

  16. Kliot, M. & Shatz, C. J. Soc. Neurosci. Abstr. 8, 815 (1982).

    Google Scholar 

  17. Shatz, C. J. Soc. Neurosci. Abstr. 7, 140 (1981).

    Google Scholar 

  18. Mason, C. A. Neuroscience 7, 541–559 (1982).

    Article  CAS  Google Scholar 

  19. Bowling, D. & Michael, C. R. J. Neurosci. 4, 198–216 (1984).

    Article  CAS  Google Scholar 

  20. Sur, M. & Sherman, S. M. Science 218, 389–391 (1982).

    Article  ADS  CAS  Google Scholar 

  21. Friedlander, M. J., Vahle-Hinz, C. & Martin, K. A. C. Invest. ophthl. vis. Sci. Suppl. 24, 138 (1983).

    Google Scholar 

  22. Sur, M., Weller, R. E. & Sherman, S. M. Soc. Neurosci. Abstr. 9, 25 (1983).

    Google Scholar 

  23. Ng, A. & Stone, J. Devl Brain Res. 5, 263–271 (1982).

    Article  Google Scholar 

  24. Rakic, P. & Riley, K. Science 219, 1441–1444 (1983).

    Article  ADS  CAS  Google Scholar 

  25. Williams, R. W., Bastiani, M. J. & Chalupa, L. M. Invest. ophthl. vis. Sci. Suppl. 24, 8 (1983).

    CAS  Google Scholar 

  26. Sanderson, K. J. J. comp. Neurol. 143, 101–118 (1971).

    Article  CAS  Google Scholar 

  27. Torrealba, F., Guillery, R. W., Eysel, U., Polley, E. H. & Mason, C. A. J. comp. Neurol. 211, 377–396 (1982).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sretavan, D., Shatz, C. Prenatal development of individual retinogeniculate axons during the period of segregation. Nature 308, 845–848 (1984). https://doi.org/10.1038/308845a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/308845a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing