Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Rare-gas solids in the Earth's deep interior

Abstract

Chemical inertness and surface volatility, combined with low abundance, have made the rare (noble) gases a unique trace-elemental and isotopic system for constraining the formation and evolution of the solid Earth and its atmosphere1,2,3. Here I examine the implications of recent high-pressure measurements of the melting temperatures of heavy rare-gas solids—argon, krypton and xenon—with new diamond-anvil cell methods, together with their pressure–volume relationship, for the total rare-gas inventory of the Earth since its formation. The solid–liquid (melting) transition in these rare-gas solids rises significantly with pressure in the 50 GPa range4,5, such that melting temperatures will exceed the geotherm at pressures of the Earth's transition zone and lower mantle (depths greater than 410–670 km). The densities of condensed rare-gas solids obtained from recent pressure–volume measurements at high compressions also exceed Earth's mantle and core densities. These pressure-induced changes in the physical properties of rare-gas solids, combined with their expected low solubilities and diffusional growth mechanisms, suggest that dense solid or fluid inclusions of rare gases—initially at nanometre scales—would have formed in the Earth's interior and may have resulted in incomplete planetary degassing. Separation of dense solid inclusions into deeper regions during early planet formation could provide a straightforward explanation for the unexpectedly low absolute abundance of xenon observed in the atmospheres of both Earth and Mars.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molar volumes of solid Ar, Kr and Xe as a function of pressure at 300 K from DAC measurements.
Figure 2: Expected melting curves of the heavy RGS based on data from high-pressure experiments and available theoretical models4,5.
Figure 3: Pressure–density data on the heavy RGS extended to 200 GPa evaluated with normal atomic weights for each element.

Similar content being viewed by others

References

  1. Ozima, M. Ar isotopes and Earth–atmosphere evolution models. Geochim. Cosmochim. Acta 39, 1127–1134 (1975).

    Article  ADS  Google Scholar 

  2. Pepin, R. O. On the origin and early evolution of terrestrial planet atmospheres and meteoritic volatiles. Icarus 92, 2–79 (1991).

    Article  ADS  CAS  Google Scholar 

  3. Allègre, C. J., Hofmann, A. & O'Nions, R. K. The argon constraints on mantle structure. Geophys. Res. Lett. 23, 3555–3557 (1996).

    Article  ADS  Google Scholar 

  4. Jephcoat, A. P. & Besedin, S. P. Temperature measurement and melting determination in the laser-heated diamond-anvil cell. Phil. Trans. R. Soc. A 354, 1333–1360 (1996).

    Article  ADS  CAS  Google Scholar 

  5. Jephcoat, A. P. & Besedin, S. P. in Properties of Earth and Planetary Materials at High Pressure and Temperature (eds Manghnani, M. H. & Yagi, T.) 287–296 (Geophys. Monogr. 101, Am. Geophys. Union, Washington DC, (1998)).

    Book  Google Scholar 

  6. Akaogi, M. & Ito, E. Heat capacity of MgSiO3perovskite. Geophys. Res. Lett. 20, 105–108 (1993).

    Article  ADS  CAS  Google Scholar 

  7. Young, D. A. Phase Diagrams of the Elements (University of California Press, Berkeley, (1991)).

    Google Scholar 

  8. Dziewonski, A. M. & Anderson, D. L. Preliminary reference Earth model. Phys. Earth Planet Inter. 25, 297–356 (1981).

    Article  ADS  Google Scholar 

  9. Carroll, M. R. & Stolper, E. M. Noble gas solubilities in silicate melts and glasses: New experimental results for argon and the relationship between solubility and ionic porosity. Geochim. Cosmochim. Acta 57, 5039–5051 (1993).

    Article  ADS  CAS  Google Scholar 

  10. Chamorro-Perez, E., Gillet, P. & Jambon, A. Argon solubility in silicate melts at very high pressures. Experimental set-up and preliminary results for silica and anorthite melts. Earth Planet. Sci. Lett. 145, 97–107 (1996).

    Article  ADS  CAS  Google Scholar 

  11. Wiens, R. C. & Pepin, R. O. Laboratory shock emplacement of noble gases, nitrogen, and carbon dioxide into basalt, and implications for trapped gases in shergottite EETA 79001. Geochim. Cosmochim. Acta 52, 295–307 (1988).

    Article  ADS  CAS  Google Scholar 

  12. Templier, C. in Fundamental Aspects of Inert Gases in Solids (eds. Donnelly, S. E. & Evans, J. H.) 117–132 (NATO ASI B279, Plenum, New York, (1991)).

    Book  Google Scholar 

  13. Evans, J. H. & Mazey, D. J. Evidence for solid krypton bubbles in copper, nickel, and gold at 293 K. J.Phys. F: Met. Phys. 15, L1–L6 (1985).

    Article  ADS  CAS  Google Scholar 

  14. Chandrasekhar, S. Stochastic problems in physics and astronomy. Rev. Mod. Phys. 15, 1–89 (1943).

    Article  ADS  MathSciNet  Google Scholar 

  15. Lux, G. The behavior of noble gases in silicate liquids: Solution, diffusion, bubbles and surface effects, with applications to natural samples. Geochim. Cosmochim. Acta 51, 1549–1560 (1987).

    Article  ADS  CAS  Google Scholar 

  16. Ozima, M. & Podosek, F. A. Noble Gas Geochemistry (Cambridge University Press, UK, (1983)).

    Google Scholar 

  17. Caldwell, W. A. et al. Structure, bonding and geochemistry of xenon at high pressures. Science 227, 930–933 (1997).

    Article  Google Scholar 

  18. Harper, C. L. & Jacobsen, S. B. Noble gases and Earth's accretion. Science 273, 1814–1818 (1996).

    Article  ADS  CAS  Google Scholar 

  19. Tonks, W. B. & Melosh, H. J. in Origin of the Earth (eds Newsom, H. E. & Jones, J. H.) 151–174 (Oxford University Press, Oxford, (1990)).

    Google Scholar 

  20. Stevenson, D. J. Models of the Earth's core. Science 214, 611–619 (1981).

    Article  ADS  CAS  Google Scholar 

  21. 1. Martin, D. & Nokes, R. Crystal settling in a vigorously convecting magma chamber. Nature 332, 534–536 (1988).

    Article  ADS  CAS  Google Scholar 

  22. Solomatov, V. S., Olson, P. & Stevenson, D. J. Entrainment from a bed of particles by thermal convection. Earth Planet. Sci. Lett. 120, 387–393 (1993).

    Article  ADS  Google Scholar 

  23. Pepin, R. O. Evolution of Earth's noble gases: consequences of assuming hydrodynamic loss driven by giant impact. Icarus 126, 148–156 (1997).

    Article  ADS  CAS  Google Scholar 

  24. Ozima, M. & Zahnle, K. Mantle degassing and atmospheric evolution: Noble gas view. Geochem. J. 27, 185–200 (1993).

    Article  CAS  Google Scholar 

  25. Ozima, M., Wieler, R., Marty, B. & Podosek, F. A. Comparative studies of solar, Q-gases and terrestrial noble gases, and implications on the evolution of the solar nebula. Geochim. Cosmochim. Acta 62, 301–314 (1998).

    Article  ADS  CAS  Google Scholar 

  26. Tolstikhin, I. N. & O'Nions, R. K. The Earth's missing xenon: A combination of early degassing and of rare gas loss from the atmosphere. Chem. Geol. 115, 1–6 (1994).

    Article  ADS  CAS  Google Scholar 

  27. Zhang, Y. & Zindler, A. Noble gas constraints on the evolution of the Earth's atmosphere. J. Geophys. Res. 94, 13719–13737 (1989).

    Article  ADS  CAS  Google Scholar 

  28. Ito, E., Morooka, K. & Ujike, O. Dissolution of K in molten iron at high pressure and temperature. Geophys. Res. Lett. 20, 1651–1654 (1993).

    Article  ADS  Google Scholar 

  29. Wetherill, G. W. Radiometric chronology of the early solar system. Annu. Rev. Nucl. Sci. 25, 283–328 (1975).

    Article  ADS  CAS  Google Scholar 

  30. Eldridge, M. D., Madden, P. A. & Frenkel, D. Entropy-driven formation of a superlattice in a hard-sphere binary mixture. Nature 365, 35–37 (1993).

    Article  ADS  CAS  Google Scholar 

  31. 1. Podosek, F. A. Solar gases in the Earth? Nature 349, 106–107 (1991).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I thank R. O. Pepin and M. Ozima for comments and discussion.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jephcoat, A. Rare-gas solids in the Earth's deep interior. Nature 393, 355–358 (1998). https://doi.org/10.1038/30712

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/30712

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing