Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Global warming and the stability of the West Antarctic Ice Sheet

Abstract

Of today's great ice sheets, the West Antarctic Ice Sheet poses the most immediate threat of a large sea-level rise, owing to its potential instability. Complete release of its ice to the ocean would raise global mean sea level by four to six metres, causing major coastal flooding worldwide. Human-induced climate change may play a significant role in controlling the long-term stability of the West Antarctic Ice Sheet and in determining its contribution to sea-level change in the near future.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Antarctic Ice Sheet (adapted from refs 2, 6, 101, 121).
Figure 2: Cross-section of an ice stream and ice shelf of a marine ice sheet, indicating location of grounding line, bedrock rise on the ocean floor.

Similar content being viewed by others

References

  1. Mercer, J. H. Antarctic ice and Sangamon Sea level. Int. Assoc. Sci. Hydrol. Symp. 79, 217–225 (1968).

    Google Scholar 

  2. Revelle, R. R. in Changing Climate 441–448 (National Academy Press, Washington DC, (1983)).

    Google Scholar 

  3. Bentley, C. R. The West Antarctic ice sheet: diagnosis and prognosis. Proc. Carbon Dioxide Research Conf. USA (NTIS, Springfield, VA, (1982)).

  4. Intergovernmental Panel on Climate Change Climate Change 1995: The Science of Climate Change (eds Houghton, J. T.et al.) 359–405 (Cambridge Univ. Press, (1996)).

  5. Rodhe, H. in Global Biogeochemical Cycles (eds Butcher, S. S., Charlson, R. G., Orians, G. H. & Wolfe, G. V.) 55–72 (Academic, London, (1992)).

    Book  Google Scholar 

  6. Bentley, C. R. in Geology of Antarctica (ed. Tinguey, R. J.) 335–364 (Oxford Univ. Press, (1991)).

    Google Scholar 

  7. Hughes, T. Is the West Antarctic ice sheet disintegrating? J. Geophys. Res. 78, 7884–7910 (1973).

    Article  ADS  Google Scholar 

  8. Thomas, R. H. & Bentley, C. R. Amodel for Holocene retreat of the West Antarctic ice sheet. Quat. Res. 10, 150–170 (1978).

    Article  Google Scholar 

  9. Denton, G. H. et al. Late Wisconsin and early Holocene glacial history, inner Ross embayment, Antarctica. Quat. Res. 31, 151–182 (1989).

    Article  CAS  Google Scholar 

  10. Thomas, R. H. Ice shelves: a review. J. Geophys. Res. 24, 273–286 (1979).

    Google Scholar 

  11. Kellogg, T. B. & Kellogg, D. E. Recent glacial history and rapid ice stream retreat in the Amundsen sea. J. Geophys. Res. 92, 8859–8864 (1987).

    Article  ADS  Google Scholar 

  12. Shipp, J. et al. High- to intermediate-resolution seismic stratigraphic analysis of mid–late-Miocene to Pleistocene strata in eastern Ross sea: implications for changing glacial/climatic regime. Terra Antarctica 1, 381–384 (1994).

    Google Scholar 

  13. Anderson, J. B. & Bartek, L. R. Cenozoic glacial history of the Ross sea revealed by intermediate resolution seismic reflection data combined with drill site information. Antarctic Res. Ser. 56, 231–263 (1992).

    Article  Google Scholar 

  14. Kennett, J. P. & Barker, P. F. Proc. Ocean Drilling Prog. 113, 937–960 (1990).

    Google Scholar 

  15. Kennett, J. P. & Hodell, D. A. Evidence for relative climatic stability of Antarctica during the early Pliocene: a marine perspective. Geografiska Annaler 75 A, 205–220 (1993).

    Article  Google Scholar 

  16. Warnke, D. . A., Bonnie, M. & Hodell, D. A. Major deglaciation of East Antarctica during the late Pliocene? Not likely from a marine perspective. Mar. Micropaleon. 27, 237–251 (1996).

    Article  ADS  Google Scholar 

  17. Scherer, R. P. Quaternary and tertiary microfossils from beneath ice stream B: evidence for adynamicWest Antarctic ice sheet history. Paleogeogr. Paleoclimatol. Paleoecol. 90, 395–412 (1991).

    Article  ADS  Google Scholar 

  18. Burckle, L. H. Is there direct evidence for late quaternary collapse of the West Antarctic ice sheet? J. Glaciol. 39, 491–494 (1993).

    Article  ADS  Google Scholar 

  19. Stuiver, M. et al. in The Last Great Ice Sheets (eds Denton, G. H. & Hughes, T. J.) 319–426 (Wiley-Interscience, New York, (1981)).

    Google Scholar 

  20. Anderson, J. B. et al. Evidence for a grounded ice sheet on the Ross sea continental shelf during thelate Pleistocene and preliminary paleodrainage reconstruction. Antarctic Res. Ser. 57, 39–62 (1992).

    Article  MathSciNet  Google Scholar 

  21. Hindmarsh, R. C. A. in Ice in the Climate System (ed. Peltier, W. R.) 1, 67–99 (Springer, Berlin, (1993)).

    Book  Google Scholar 

  22. Lambeck, K. & Nakada, M. Constraints on the age and duration of the last interglacial period and on sea level variations. Nature 357, 125–128 (1992).

    Article  ADS  Google Scholar 

  23. Howard, W. R. Awarm future in the past. Nature 388, 418–419 (1997).

    Article  ADS  CAS  Google Scholar 

  24. Neumann, A. C. & Hearty, P. J. Rapid sea-level changes at the close of the last interglacial (substage 5e) recorded in Bahamian island geology. Geology 24, 775–778 (1996).

    Article  ADS  Google Scholar 

  25. Jacobs, S. S. Is the Antarctic ice sheet growing? Nature 360, 29–33 (1992).

    Article  ADS  Google Scholar 

  26. Weertman, J. Stability of the junction of an ice sheet and an ice shelf. J. Glaciol. 13, 3–11 (1974).

    Article  ADS  Google Scholar 

  27. Thomas, R. H., Sanderson, T. J. O. & Rose, K. E. Effect of climatic warming on the West Antarctic ice sheet. Nature 277, 355–358 (1979).

    Article  ADS  Google Scholar 

  28. Jacobs, S. S. et al. Melting of ice shelves and the mass balance of Antarctica. J. Glaciol. 38, 375–387 (1992).

    Article  ADS  Google Scholar 

  29. Bentley, C. R. Antarctic ice streams: a review. J. Geophys. Res. 92, 8843–8858 (1987).

    Article  ADS  Google Scholar 

  30. Shabtaie, S., Whillans, I. M. & Bentley, C. R. The morphology of ice streams A, B, and C, West Antarctica, and their environs. J. Geophys. Res. 92, 8865–8883 (1987).

    Article  ADS  Google Scholar 

  31. Bindschadler, R. A. & Scambos, T. A. Satellite-image-derived velocity field of an Antarctic ice stream. Science 252, 242–246 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Bindschadler, R. & Vornberger, P. Changes in the West Antarctic ice sheet since 1963 from declassified satellite photography. Science 279, 689–692 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Englehardt, H. et al. Physical conditions at the base of a fast moving Antarctic ice stream. Science 248, 57–59 (1990).

    Article  ADS  Google Scholar 

  34. Shabtaie, S. & Bentley, C. R. West Antarctic ice streams draining into the Ross ice shelf: configuration and mass balance. J. Geophys. Res. 92, 1311–1336 (1987).

    Article  ADS  Google Scholar 

  35. Whillans, I. M., Bolzan, J. & Shabtaie, S. Velocity of ice streams B and C, Antarctica. J. Geophys. Res. 92, 8895–8902 (1987).

    Article  ADS  Google Scholar 

  36. Bindschadler, R. Actively surging West Antarctic ice streams and their response characteristics. Ann. Glaciol. 24, 409–414 (1997).

    Article  ADS  Google Scholar 

  37. Blankenship, D. D. et al. Seismic measurements reveal a saturated porous layer beneath an active Antarctic ice stream. Nature 322, 54–57 (1986).

    Article  ADS  Google Scholar 

  38. Alley, R. B. et al. Deformation of till beneath ice stream B, West Antarctica. Nature 322, 57–59 (1986).

    Article  ADS  Google Scholar 

  39. Blankenship, D. D. et al. Till beneath ice stream B. 1. Properties derived from seismic travel times. J. Geophys. Res. 92, 8903–8911 (1987).

    Article  ADS  Google Scholar 

  40. Alley, R. B. et al. Till beneath ice stream B. 4. A coupled ice-till flow model. J. Geophys. Res. 92, 8931–8940 (1987).

    Article  ADS  Google Scholar 

  41. Kamb, B. & Englehardt, H. in Proc. of the International Symposium held at St. Petersburg, September 1990 (1AHS Pub. No. 208, 145–154, (1991)).

    Google Scholar 

  42. Anandakrishnan, S. et al. Influence of subglacial geology on the position of a West Antarctic ice stream from seismic observations. Nature (in the press).

  43. MacAyeal, D. R. Large-scale ice flow over a viscous basal sediment: theory and application to ice stream B, Antarctica. J. Geophys. Res. 94, 4071–4087 (1989).

    Article  ADS  Google Scholar 

  44. Alley, R. B. In search of ice-stream sticky spots. J. Glaciol. 39, 447–454 (1993).

    Article  ADS  Google Scholar 

  45. Echelmeyer, K. A. et al. The role of the margins in the dynamics of an active ice stream. J. Glaciol. 40, 527–538 (1994).

    Article  ADS  Google Scholar 

  46. Anandakrishnan, S. & Alley, R. B. Stagnation of ice stream C, West Antarctica by water piracy. Geophys. Res. Lett. 24, 265–268 (1997).

    Article  ADS  Google Scholar 

  47. Doake, C. S. M. et al. Glaciological studies on Rutford ice stream, Antarctica. J. Geophys. Res. 92, 8951–8960 (1987).

    Article  ADS  Google Scholar 

  48. Jenkins, A. & Doake, C. S. M. Ice-ocean interaction on Ronne ice shelf, Antarctica. J. Geophys. Res. 96, 791–813 (1991).

    Article  ADS  Google Scholar 

  49. Smith, A. M. Basal conditions on Rutford ice stream West Antarctica, from seismic observations. J. Geophys. Res. 102, 543–552 (1997).

    Article  ADS  Google Scholar 

  50. Crabtree, R. D. & Doake, C. S. M. Pine island glacier and its drainage basin: results from radio-echo sounding. Ann. Glaciol. 3, 65–70 (1982).

    Article  ADS  Google Scholar 

  51. Lucchitta, B. K. et al. Antarctic glacier-tongue velocities from Landsat images: first results. Ann. Glaciol. 17, 356–366 (1993).

    Article  ADS  Google Scholar 

  52. Lucchitta, B. K., Rosanova, C. E. & Mullins, K. F. Velocities of Pine island glacier, West Antarctica, from ERS-1 SAR images. Ann. Glaciol. 21, 277–283 (1995).

    Article  ADS  Google Scholar 

  53. Jenkins, A. et al. Glaciological and oceanographic evidence of high melt rates beneath Pine island glacier, West Antarctica. J. Glaciol. 43, 114–121 (1997).

    Article  ADS  Google Scholar 

  54. Thomas, R. H. The dynamics of marine ice sheets. J. Glaciol. 24, 167–177 (1979).

    Article  ADS  CAS  Google Scholar 

  55. Thomas, R. H. The creep of ice shelves: interpretation of observed behaviour. J. Glaciol. 12, 55–70 (1973).

    Article  ADS  Google Scholar 

  56. Mercer, J. H. West Antarctic ice sheet and CO2greenhouse effect: a threat of disaster. Nature 271, 321–325 (1978).

    Article  ADS  Google Scholar 

  57. Lingle, C. S. Anumerical model of interactions between a polar ice stream and the ocean: application to ice stream E. West Antarctica. J. Geophys. Res. 89, 3523–3549 (1984).

    Article  ADS  Google Scholar 

  58. Doake, C. S. M. & Vaughan, D. G. Rapid disintegration of the Wordie ice shelf in response to atmospheric warming. Nature 350, 328–330 (1991).

    Article  ADS  Google Scholar 

  59. Rott, H., Skvarca, P. & Nagler, T. Rapid collapse of northern Larsen ice shelf, Antarctica. Science 271, 788–792 (1996).

    Article  ADS  CAS  Google Scholar 

  60. Vaughan, D. G. & Doake, C. S. M. Recent atmospheric warming and retreat of ice shelves on the Antarctic peninsula. Nature 379, 328–331 (1996).

    Article  ADS  CAS  Google Scholar 

  61. Vaughan, D. G. Implications of the break-up of Wordie ice shelf, Antarctica, for sea level. Antarctic Sci. 5, 403–408 (1993).

    Article  ADS  Google Scholar 

  62. Doake, C. S. M. et al. Breakup and conditions for stability of the northern Larsen Ice Shelf, Antarctica. Nature 391, 778–780 (1998).

    Article  ADS  CAS  Google Scholar 

  63. Ohmura, A., Wyld, M. & Bengtsson, L. Apossible change in mass balance of Greenland and Antarctic ice sheets in the coming century. J. Clim. 9, 2129–2135 (1996).

    Article  ADS  Google Scholar 

  64. Hughes, T. The stability of the West Antarctic ice sheet: what has happened and what will happen. Proc. Carbon Dioxide Res. Conf. USA 1982 (NTIS, Springfield, VA, (1982)).

  65. Nicholls, K. W. Predicted reduction in basal melt rates of an Antarctic ice shelf in a warmer climate. Nature 388, 480–482 (1997).

    Article  ADS  CAS  Google Scholar 

  66. Weertman, J. The stability of ice-age ice sheets. J. Geophys. Res. 66, 3783–3792 (1961).

    Article  ADS  Google Scholar 

  67. Nye, J. F. The response of glaciers and ice-sheets to seasonal and climatic changes. Proc. R. Soc. Lond. A 256, 559–584 (1960).

    Article  ADS  MathSciNet  Google Scholar 

  68. Hollin, J. T. On the glacial history of Antarctica. J. Glaciol. 4, 173–195 (1962).

    Article  ADS  Google Scholar 

  69. Robin, G. deQ. & Adie, R. J. in Antarctic Research (eds Priestley, E., Adie, R. J. & Robin, G. deQ.) 100–117 (Butterworths, London, (1964)).

    Google Scholar 

  70. Hughes, T. West Antarctic ice streams. Rev. Geophys. Space Sci. 15, 1–46 (1977).

    Article  ADS  Google Scholar 

  71. Shabtaie, S., Bindschadler, R. . A. & MacAyeal, D. R. Mass-balance studies of ice streams A, B, and C, West Antarctica, and possible surging behavior of ice stream B. Ann. Glaciol. 11, 137–149 (1988).

    Article  ADS  Google Scholar 

  72. Lingle, C. S. & Brown, T. J. in Dynamics of the West Antarctic Ice Sheet (eds van derVeen, C. J. & Oerlemans, J.) 249–285 (Reidel, Dordrecht, The Netherlands, (1987)).

    Book  Google Scholar 

  73. Weertman, J. Glaciology's grand unsolved problem. Nature 260, 284–286 (1976).

    Article  ADS  Google Scholar 

  74. Bentley, C. R. Rapid sea-level rise soon from West Antarctic ice sheet collapse? Science 275, 1077–1078 (1997).

    Article  CAS  Google Scholar 

  75. Alley, R. B. & Whillans, I. M. Changes in the West Antarctic ice sheet. Science 254, 959–963 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  76. van der Veen, C. J. Response of a marine ice sheet to changes at the grounding line. Quat. Res. 24, 257–267 (1985).

    Article  Google Scholar 

  77. Herterich, K. in Dynamics of the West Antarctic Ice Sheet (eds van der Veen, C. J. & Oerlemans, J.) 185–202 (Reidel, Dordrecht, The Netherlands, (1987)).

    Book  Google Scholar 

  78. Huybrechts, P. The Antarctic ice sheet during the last glacial-interglacial cycle: a three-dimensional experiment. Ann. Glaciol. 14, 115–119 (1990).

    Article  ADS  Google Scholar 

  79. Barcilon, V. & MacAyeal, D. R. Steady flow of a viscous ice stream across a no-slip/free-slip transition at the bed. J. Glaciol. 39, 167–185 (1993).

    Article  ADS  Google Scholar 

  80. Van der Veen, C. J. & Whillans, I. M. Model experiments on the evolution and stability of ice streams. Ann. Glaciol. 23, 129–137 (1996).

    Article  ADS  Google Scholar 

  81. MacAyeal, D. R. Irregular oscillations of the West Antarctic ice sheet. Nature 359, 29–32 (1992).

    Article  ADS  Google Scholar 

  82. MacAyeal, D. R. Binge/purge oscillations of the Laurentide ice sheet as a cause of the north Atlantic's Heinrich events. J. Paleoceanogr. 8, 775–784 (1993).

    Article  ADS  Google Scholar 

  83. Greve, R. & MacAyeal, D. R. Dynamic/thermodynamic simulations of Laurentide ice-sheet instability. Ann. Glaciol. 3, 328–335 (1996).

    Article  ADS  Google Scholar 

  84. Verbitsky, M. Y. & Oglesby, R. J. The CO2-induced thickening/thinning of the Greenland and Antarctic ice sheets as simulated by a GCM (CCM1) and an ice-sheet model. Clim. Dynam. 11, 247–253 (1995).

    ADS  Google Scholar 

  85. Fastook, J. L. & Prentice, M. Afinite-element model of Antarctica: sensitivity test for meteorological mass-balance relationship. J. Glaciol. 40, 167–175 (1994).

    Article  ADS  Google Scholar 

  86. Lingle, C. S. in Glaciers, Ice Sheets and Sea Level: Effect of a CO2-Induced Climate Change 317–330 (US Dept of Energy, Washington DC, (1985)).

    Google Scholar 

  87. Thomas, R. H. in Glaciers, Ice Sheets and Sea Level: Effect of a CO2-Induced Climate Change 301–316 (US Dept of Energy, Washington DC, (1985)).

    Google Scholar 

  88. Huybrechts, P. & Oerlemans, J. Response of the Antarctic ice sheet to future greenhouse warming. Clim. Dynam. 5, 93–102 (1990).

    Article  ADS  Google Scholar 

  89. Budd, W. F., Jenssen, D., Mavrakis, E. & Coutts, B. Modelling the Antarctic ice-sheet changes through time. Ann. Glaciol. 20, 291–297 (1994).

    Article  ADS  Google Scholar 

  90. Anandakrishnan, S. & Alley, R. B. Tidal forcing of basin seismicity of ice stream C, West Antarctica, observed far inland. J. Geophys. Res. 102, 15183–15196 (1997).

    Article  ADS  Google Scholar 

  91. Alley, R. B. & MacAyeal, D. R. West Antarctic ice sheet collapse: chimera or clear danger? Antarc. J.-Rev. 1993 59–60 (1993).

  92. Budd, W. F. & Smith, I. N. in Glaciers, Ice Sheets and Sea Level: Effect of a CO2-Induced Climate Change 172–177 (US Dept of Energy, Washington DC, (1985)).

    Google Scholar 

  93. Bentley, C. R. & Giovinetto, M. B. in International Conference on the Role of the Polar Regions inGlobalChange: Proceedings of a Conference Held June 11–15, 1990 at University of Alaska, Fairbanks (eds Weller, G., Wilson, C. L. & Serverin, B. A. B.) 481–488 (Univ. of Alaska, Fairbanks, (1991)).

    Google Scholar 

  94. Jacobs, S. S., Hellmer, H. H. & Jenkins, A. Antarctic ice sheet melting in the southeast Pacific. Geophys. Res. Lett. 23, 957–960 (1996).

    Article  ADS  Google Scholar 

  95. Nichols, K. W., Makinson, K. & Johnson, M. R. New oceanographic data from beneath Ronne ice shelf, Antarctica. Geophys. Res. Lett. 24, 167–170 (1997).

    Article  ADS  Google Scholar 

  96. Intergovernmental Panel on Climate Change Climate Change 1995: The Science of Climate Change (eds Houghton, J. T.et al.) 9–49 (Cambridge Univ. Press, (1996)).

  97. Intergovernmental Panel on Climate Change Climate Change 1995: The Science of Climate Change (eds Houghton, J. T.et al.) 133–192 (Cambridge Univ. Press, (1996)).

  98. King, J. C. Recent climate variability in the vicinity of the Antarctic peninsula. Int. J. Climatol. 14, 357–369 (1994).

    Article  Google Scholar 

  99. Mosley-Thompson, E. et al. Recent increase in South Pole snow accumulation. Ann. Glaciol. 21, 131–138 (1995).

    Article  ADS  Google Scholar 

  100. Jouzel, J. Climatic information over the last century deduced from a detailed isotopic record in the South Pole snow. J. Geophys. Res. 88, 2693–2703 (1993).

    Article  ADS  Google Scholar 

  101. Mosley-Thompson, E. in Climate since A.D. 1500 (eds Bradley, R. S. & Jones, P. D.) 572–591 (Routledge, New York, (1992)).

    Google Scholar 

  102. Isaksson, E. et al. Acentury of accumulation and temperature changes in Dronning Maud Land, Antarctica. J. Geophys. Res. 101, 7085–7094 (1992).

    Article  ADS  Google Scholar 

  103. Peel, D. A. in Climate since A.D. 1500 (eds Bradley, R. S. & Jones, P. D.) 549–571 (Routledge, New York, (1992)).

    Google Scholar 

  104. Jacka, T. H. & Budd, W. F. in International Conference on the Role fo the Polar Regions in GlobalChange: Proceedings of a Conference held June 11–15, 1990 at University of Alaska, Fairbanks (eds Weller, G., Wilson, C. L. & Serverin, B. A. B.) 63–70 (Univ. of Alaska, Fairbanks, (1991)).

    Google Scholar 

  105. de la Mare, W. K. Abrupt mid-twentieth-century decline in Antarctic sea-ice extent from whaling records. Nature 389, 57–59 (1997).

    Article  ADS  CAS  Google Scholar 

  106. Cavalieri, D. J. et al. Observed hemispheric asymmetry in global sea ice changes. Science 278, 1104–1106 (1997).

    Article  ADS  CAS  Google Scholar 

  107. Robin, G. deQ. Ice cores and climate change. Phil. Trans. R. Soc. Lond. B 280, 143–168 (1977).

    Article  ADS  Google Scholar 

  108. Lorius, C. et al. A150,000-year climatic record from Antarctic ice. Nature 316, 591–595 (1985).

    Article  ADS  CAS  Google Scholar 

  109. Thompson, S. L. & Pollard, D. Greenland and Antarctic mass balances for present and doubled atmospheric CO2from the GENESIS version-2 global climate model. J. Am. Meteorol. Soc. 10, 871–900 (1997).

    Google Scholar 

  110. Kapsner, W. R. et al. Dominant influence of atmospheric circulation on snow accumulation in Greenland over the past 18,000 years. Nature 373, 52–54 (1995).

    Article  ADS  CAS  Google Scholar 

  111. Bromwich, D. Ice sheets and sea level. Nature 373, 18–19 (1995).

    Article  ADS  CAS  Google Scholar 

  112. Huybrechts, P. Formation and disintegration of the Antarctic ice sheet. Ann. Glaciol. 20, 336–340 (1994).

    Article  ADS  Google Scholar 

  113. Haywood, J. M. et al. Transient response of a coupled model to estimated changes in greenhouse gas and sulfate concentrations. Geophys. Res. Lett. 24, 1335–1338 (1997).

    Article  ADS  CAS  Google Scholar 

  114. Manabe, S. & Stouffer, R. J. Multiple-century response of a coupled ocean-atmosphere model to an increase of atmospheric carbon dioxide. J. Climate 7, 5–23 (1994).

    Article  ADS  Google Scholar 

  115. Murphy, J. M. & Mitchell, J. F. B. Transient response of the Hadley Centre coupled ocean-atmosphere model to increasing carbon dioxide. Part II: spatial and temporal structure of response. J. Clim. 8, 57–80 (1995).

    Article  ADS  Google Scholar 

  116. Hellmer, H. H., Jacobs, S. S. & Jenkins, A. Oceanic erosion of a floating Antarctic glacier in the Amundsen sea. Antarctic Res. Ser. 75, (in the press).

  117. MacAyeal, D. R. Thermohaline circulation below the Ross ice shelf: a consequence of tidally induced vertical mixing and basal melting. J. Geophys. Res. 89, 597–606 (1984).

    Article  ADS  Google Scholar 

  118. Grosfeld, K., Gerdes, R. & Determann, J. Thermohaline circulation and interaction between ice shelf cavities and the adjacent open ocean. J. Geophys. Res. 102, 15595–15610 (1997).

    Article  ADS  Google Scholar 

  119. Budd, W. F. & Simmonds, I. in International Conference on the Role of the Polar Regions in GlobalChange: Proceedings of a Conference held June 11–15, 1990 at University of Alaska, Fairbanks (eds Weller, G., Wilson, C. L. & Serverin, B. A. B.) 489–494 (Univ. of Alaska, Fairbanks, (1991)).

    Google Scholar 

  120. Gregory, J. M. & Oerlemans, J. Sea-level rise from glacier melt over the next century. Nature 391, 474–476 (1998).

    Article  ADS  CAS  Google Scholar 

  121. Antarctica: Glaciological and Geophysical Folio (ed. Drewry, D. J.) sheets 3 and 4 (Scott Polar Research Institute, Cambridge, UK, (1983)).

  122. Bindschadler, R., Vornberger, P. L. & Shabtaie, S. The detailed net mass balance of the ice plain on IceStream B. Antarctica: a geographic information system approach. J. Glaciol. 39, 471–482 (1993).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I thank R. Alley, R. Bindschadler, C. Bentley, R. Hindmarsh, P.Huybrechts, S. Jacobs, A. Jenkins, C.Raymond and I. Whillans for their comments on drafts of this manuscript. R. J. Stouffer and J. F. B. Mitchell kindly provided data in advance of publication.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oppenheimer, M. Global warming and the stability of the West Antarctic Ice Sheet. Nature 393, 325–332 (1998). https://doi.org/10.1038/30661

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/30661

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing