Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Comparison of 14C and O2 measurements of phytoplankton production in oligotrophic waters

Abstract

Present day estimates of primary phytoplankton production are derived almost exclusively from the results of a single method, the 14C technique. 14C methodology is amenable to routine measurement and also has the requisite sensitivity for the large expanses of ocean characterized by low autotrophic biomass. However, there is still great uncertainty as to its ecological interpretations; for example, whether it is measuring net or gross primary production. We report here the first comparison of planktonic photosynthesis based on 14C assimilation with measurements of oxygen flux for an oligotrophic environment of ocean character. We conclude from the results that there is no evidence of persistent errors of any size, unique to the 14C technique, in the measurement of gross production. We also infer, from a consideration of the rates themselves, that in vitro methodology is not biased with respect to in situ photosynthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Koblentz-Mishke, O. T., Volkovinsky, V. V. & Kabanova, J. G. in Scientific Exploration of the South Pacific (ed. Wooster, W. S.) 183–193 (National Academy of Sciences, Washington DC, 1970).

    Google Scholar 

  2. Bolin, B., Degens, E. T., Duvigneaud, P. & Kempe, S. in The Global Carbon Cycle (eds Bolin, B., Degens, E. T., Kempe, S. & Ketner, P.) 1–56 (Wiley, Chichester, 1978).

    Google Scholar 

  3. Peterson, B. J. A. Rev. Ecol. Syst. 11, 359–385 (1980).

    Article  Google Scholar 

  4. Sorokin, Y. I. Mar. Biol. 11, 101–105 (1971).

    Google Scholar 

  5. Sheldon, R. W. & Sutcliffe, W. H. Limnol. Oceanogr. 23, 1051–1055 (1978).

    Article  ADS  Google Scholar 

  6. Shulenberger, E. & Reid, J. L. Deep-Sea Res. 28, 901–919 (1981).

    Article  ADS  CAS  Google Scholar 

  7. Gieskes, W. W. C., Kraay, G. W. & Baars, M. A. Neth. J. Sea. Res. 13, 58–78 (1979).

    Article  CAS  Google Scholar 

  8. Jenkins, W. J. Nature 300, 246–248 (1982).

    Article  ADS  CAS  Google Scholar 

  9. Eppley, R. W. EOS 63, 522 (1982).

    Article  ADS  Google Scholar 

  10. Williams, P. J. le B. & Jenkinson, N. W. Limnol. Oceanogr. 27, 576–585 (1982).

    Article  ADS  CAS  Google Scholar 

  11. Fitzwater, S. E., Knauer, G. A. & Martin, J. H. Limnol. Oceanogr. 27, 544–551 (1982).

    Article  ADS  CAS  Google Scholar 

  12. Marra, J. & Heinemann, K. R. Limnol. Oceanogr. (in the press).

  13. Carpenter, E. J. & Lively, J. S. in Primary Productivity in the Sea (ed. Falkowski, P. G.) 161–178 (Plenum, New York, 1980).

    Book  Google Scholar 

  14. Venrick, E. L., Beers, J. R. & Heinbokel, J. F. J. exp. mar. Biol. Ecol. 26, 55–76 (1977).

    Article  CAS  Google Scholar 

  15. Gieskes, W. W. C., Kraay, G. W. & Tijssen, S. B. Neth. J. Sea. Res. 12, 195–204 (1978).

    Article  CAS  Google Scholar 

  16. Strickland, J. D. H. Fish. Res. Bd Can. Bull. 122 (1960).

  17. Burris, J. E. Mar. Biol. 65, 215–219 (1981).

    Article  CAS  Google Scholar 

  18. Richards, F. A. in Chemical Oceanography Vol. 1 (eds Riley, J. P. & Skirrow, G.) 611–645 (Academic, New York, 1965).

    Google Scholar 

  19. Williams, P. J. le B., Raine, C. R. T. & Bryan, J. R. Oceanol. Acta 2, 411–416 (1979).

    Google Scholar 

  20. Dugdale, R. C. & Goering, J. J. Limnol. Oceanogr. 12, 196–206 (1967).

    Article  ADS  CAS  Google Scholar 

  21. Eppley, R. W. & Peterson, B. J. Nature 282, 677–680 (1979).

    Article  ADS  Google Scholar 

  22. Glover, H. E. J. Plankton Res. 2, 69–79 (1980).

    Article  CAS  Google Scholar 

  23. Falkowski, P. G. J. Plankton Res. 3, 203–216 (1981).

    Article  CAS  Google Scholar 

  24. Davies, J. M. & Williams, P. J. le B. J. Plankton Res. (submitted).

  25. Steemann Nielsen, E. & Jensen, E. A. Galathea Rep. 1, 49–136 (1957).

    Google Scholar 

  26. Bienfang, P. K. & Szyper, J. P. Deep-Sea Res. 28, 981–1000 (1981).

    Article  ADS  CAS  Google Scholar 

  27. Gunderson, K. R. et al. Pacif. Sci. 30, 45–68 (1976).

    Google Scholar 

  28. Riley, G. A. J. mar. Res. 2, 145–162 (1939).

    Article  CAS  Google Scholar 

  29. Gilmartin, M. J. exp. mar. Biol. Ecol. 16, 181–204 (1974).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, P., Heinemann, K., Marra, J. et al. Comparison of 14C and O2 measurements of phytoplankton production in oligotrophic waters. Nature 305, 49–50 (1983). https://doi.org/10.1038/305049a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/305049a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing