Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The molecular elasticity of the extracellular matrix protein tenascin

Abstract

Extracellular matrix proteins are thought to provide a rigid mechanical anchor that supports and guides migrating and rolling cells1,2,3,4. Here we examine the mechanical properties of the extracellular matrix protein tenascin by using atomic-force-microscopy techniques. Our results indicate that tenascin is an elastic protein. Single molecules of tenascin could be stretched to several times their resting length. Force–extension curves showed a saw-tooth pattern, with peaks of force at 137 pN. These peaks were 25 nm apart. Similar results have been obtained by study of titin5. We also found similar results by studying recombinant tenascin fragments encompassing the 15 fibronectin type III domains of tenascin. This indicates that the extensibility of tenascin may be due to the stretch-induced unfolding of its fibronectin type III domains. Refolding of tenascin after stretching, observed when the force was reduced to near zero, showed a double-exponential recovery with time constants of 42 domains refolded per second and 0.5 domains per second. The former speed of refolding is more than twice as fast as any previously reported speed of refolding of a fibronectin type III domain6,7. We suggest that the extensibility of the modular fibronectin type III region may be important in allowing tenascin–ligand bonds to persist over long extensions. These properties of fibronectin type III modules may be of widespread use in extracellular proteins containing such domain8,9.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Force–extension relationships for native tenascin hexabrachions measured with AFM techniques.
Figure 2: The WLC model, using a persistence length of p = 0.42 nm and a contour length increment of Δlc = 28.5 nm, describes the force–extension curves of recombinant tenascin fragments.
Figure 3: Repeated unfolding/refolding cycles of a single recombinant TNfnALL protein.
Figure 4: Repeated refolding cycles of a single TNfnAll protein using a double-pulse experiment (inset) identifies at least two refolding rate constants.
Figure 5: A Monte Carlo simulation shows that tandem FN-III repeats can extend the range and lifetime of a protein–ligand bond and reduce the force required to break it (see Methods).

Similar content being viewed by others

References

  1. Palecek, S. P., Loftus, J. C., Ginsberg, M. H., Lauffenberger, D. A. & Horwitz, A. F. Integrin–ligand binding properties govern cell migration speed through cell–substratum adhesiveness. Nature 385, 537–540 (1997).

    Article  ADS  CAS  Google Scholar 

  2. Lauffenburger, D. A. & Horwitz, A. F. Cell migration: a physically integrated molecular process. Cell 84, 359–369 (1996).

    Article  CAS  Google Scholar 

  3. Alon, R., Hammer, D. A. & Springer, T. A. Lifetime of the P-selectin carbohydrate bond and its response to tensile force in hydrodynamic flow. Nature 374, 539–542 (1995).

    Article  ADS  CAS  Google Scholar 

  4. Alon, R.et al. The kinetics of L-selectin tethers and the mechanics of selectin-mediated rolling. J. Cell Biol. 138, 1169–1180 (1997).

    Article  CAS  Google Scholar 

  5. Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J. M. & Gaub, H. E. Reversible unfolding of individual titin immunoglobin domains by AFM. Science 276, 1109–1112 (1997).

    Article  CAS  Google Scholar 

  6. Plaxco, K. W.et al. Rapid refolding of a proline-rich all-β-sheet fibronectin type III module. Proc. Natl Acad. Sci. USA 93, 10703–10706 (1996).

    Article  ADS  CAS  Google Scholar 

  7. Plaxco, K. W.et al. Acomparison of the folding kinetics and thermodynamics of two homologous fibronectin type III domains. J. Mol. Biol. 270, 763–770 (1997).

    Article  CAS  Google Scholar 

  8. Bork, P.et al. Structure and distribution of modules in extracellular proteins. Quart. Rev. Biophys. 29, 119–167 (1996).

    Article  CAS  Google Scholar 

  9. Campbell, I. D. & Spitzfaden, C. Building proteins with fibronectin type III modules. Structure 2, 333–337 (1994).

    Article  CAS  Google Scholar 

  10. Erickson, H. P. Tenascin-C, tenascin-R and tenascin-X: a family of talented proteins in search of functions. Curr. Opin. Cell Biol. 5, 869–876 (1993).

    Article  CAS  Google Scholar 

  11. Chiquet-Ehrismann, R. Tenascins, a growing family of extracellular matrix proteins. Experientia 51, 853–862 (1995).

    Article  CAS  Google Scholar 

  12. Clark, R., Erickson, H. P. & Springer, T. A. Tenascin supports lymphocyte rolling. J. Cell Biol. 137, 755–765 (1997).

    Article  CAS  Google Scholar 

  13. Bork, P. & Doolittle, R. F. Proposed acquisition of an animal protein domain by bacteria. Proc. Natl Acad. Sci. USA 89, 8990–8994 (1992).

    Article  ADS  CAS  Google Scholar 

  14. Potts, J. R. & Campbell, I. D. Structure and function of fibronectin modules. Matrix Biol. 15, 313–320 (1996).

    Article  CAS  Google Scholar 

  15. Keller, T. C. S. Molecular bungees. Nature 387, 233–235 (1997).

    Article  ADS  CAS  Google Scholar 

  16. Tskhovrebova, L., Trinick, J., Sleep, J. A. & Simmons, R. M. Elasticity and unfolding of single molecules of the giant muscle protein titin. Nature 387, 308–312 (1997).

    Article  ADS  CAS  Google Scholar 

  17. Kellermayer, S. B., Smith, S. B., Granzier, H. L. & Bustanente, C. Folding-unfolding transitions in single titin molecules characterized with lazer tweezers. Science 276, 1112–1116 (1997).

    Article  CAS  Google Scholar 

  18. Rief, M.et al. Single molecule force spectroscopy on polysaccharides by atomic force microscopy. Science 275, 1295–1297 (1997).

    Article  CAS  Google Scholar 

  19. Florin, E. L., Moy, V. T. & Gaub, H. E. Adhesion forces between individual ligand-receptor pairs. Science 264, 415–417 (1994).

    Article  ADS  CAS  Google Scholar 

  20. Radmacher, M., Fritz, M., Hansma, H. G. & Hansma, P. K. Direct observation of enzyme activity with the atomic force microscope. Science 265, 1577–1579 (1994).

    Article  ADS  CAS  Google Scholar 

  21. Aukhil, I.et al. Cell- and heparin-binding domains of the hexabrachion arm identified by tenascin expression proteins. J. Biol. Chem. 268, 2542–2552 (1993).

    CAS  PubMed  Google Scholar 

  22. Marko, J. F. & Siggia, E. D. Stretching DNA. Macromolecules 28, 8759–8770 (1995).

    Article  ADS  CAS  Google Scholar 

  23. Leahy, D. J., Hendrickson, W. A., Aukhil, I. & Erickson, H. P. Structure of a fibronectin type III domain from tenascin phased by MAD analysis of the selenomethionylprotein. Science 258, 987–991 (1992).

    Article  ADS  CAS  Google Scholar 

  24. Clarke, J., Hamill, S. J. & Johnson, C. M. Folding and stability of a fibronectin type III domain of human tenascin. J. Mol. Biol. 270, 771–778 (1997).

    Article  CAS  Google Scholar 

  25. Florin, E. L.et al. Sensing specific molecular interactions with the atomic force microscope. Biosens. Biolelectr. 10, 895–901 (1995).

    Article  CAS  Google Scholar 

  26. Bell, G. I. Models for the specific adhesion of cells to cells. Science 200, 618–627 (1978).

    Article  ADS  CAS  Google Scholar 

  27. Hammer, D. A. & Apte, S. M. Simulation of cell rolling and adhesion on surfaces in shear flow: general results and analysis of selectin-mediated neutrophil adhesion. Biophys. J. 63, 35–57 (1992).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio M. Fernandez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oberhauser, A., Marszalek, P., Erickson, H. et al. The molecular elasticity of the extracellular matrix protein tenascin. Nature 393, 181–185 (1998). https://doi.org/10.1038/30270

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/30270

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing