Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Na+ −K+ −Cl co-transport in the intestine of a marine teleost

Abstract

A key element in the absorption of salt and water by various epithelia is the presence, in the apical or brush border membrane, of a mechanism for directly coupling the inward movements of Na+ and Cl (ref. 1). In this way the downhill gradient for Na+ from lumen to cell, which is maintained by the cell's Na+/K+ pump, can provide the energy for cellular accumulation and transepithelial transport of Cl. A requirement for K+ at the serosal surface of the epithelium has long been accepted as essential to the operation of the Na+/K+ pump and therefore to salt absorption. Until very recently, however, the effect of luminal K+ on NaCl absorption has not been explored. We show here that luminal K+ stimulates NaCl absorption in the intestine of a marine teleost, the winter flounder, Pseudopleuronectes americanus. Furthermore, K+ uptake across the brush border membrane depends on the presence of both Na+ and Cl in the bathing medium and is inhibited by furosemide, which also inhibits the coupled uptake of Na+ and Cl (ref. 2). Thus, flounder intestine seems to have a Na+ −K+ −Cl co-transport system similar to that demonstrated in erythrocytes3–5, cultured tumour cells6, cultured kidney cells7 and squid giant axon8. Electrophysiological studies of the thick ascending limb of Henlé's loop in mammalian kidney9 and the diluting segment in amphibian kidney10 also indicate that luminal K+ is required for salt absorption. Co-transport of Na+, K+ and Cl may therefore be characteristic of a variety of cells and tissues, including salt-absorbing epithelia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Frizzell, R. A., Field, M. & Schultz, S. G. Am. J. Physiol. 236, F1–F8 (1979).

    Article  CAS  Google Scholar 

  2. Frizzell, R. A., Smith, P. L., Vosburgh, E. & Field, M. J. Membrane Biol. 55, 157–163 (1980).

    Article  Google Scholar 

  3. Dunham, P., Stewert, G. W. & Ellory, J. C. Proc. natn. Acad. Sci. U.S.A. 77, 1711–1715 (1980).

    Article  ADS  CAS  Google Scholar 

  4. Palfrey, H. C. & Greengard, P. Ann. N.Y. Acad. Sci. 373, 291–308 (1981).

    Article  ADS  Google Scholar 

  5. Haas, M., Schmidt, W. F. & McManus, T. J. J. gen. Physiol. 80, 125–147 (1982).

    Article  CAS  Google Scholar 

  6. Geck, P., Pietrzyk, C., Burchkhardt, B. C., Pfeiffer, B. & Heintz, E. Biochim. biophys. Acta 600, 432–447 (1980).

    Article  CAS  Google Scholar 

  7. McRoberts, J. A., Erlinger, S., Rindler, M. J. & Saier, M. H. J. biol. Chem. 257, 2260–2266 (1982).

    CAS  PubMed  Google Scholar 

  8. Russell, J. M. Biophys. J. 33, 40a (1981).

    Google Scholar 

  9. Greger, R. & Schlatter, E. Pflügers Arch, ges. Physiol. 392, 92–94 (1981).

    Article  CAS  Google Scholar 

  10. Sackin, H., Morgunov, N. & Boulpaep, E. L. Fedn Proc. 41, 1495 (1982).

    Google Scholar 

  11. Field, M., Karnaky, K. J. Jr, Smith, P. L., Bolton, J. E. & Kinter, W. B. J. Membrane Biol. 41, 265–193 (1978).

    Article  CAS  Google Scholar 

  12. Field, M., Smith, P. L. & Bolton, J. E. J. Membrane Biol. 55, 157–163 (1980).

    Article  CAS  Google Scholar 

  13. Duffey, M. E., Thompson, S. W., Frizzell, R. A. & Schultz, S. G. J. Membrane Biol. 50, 331–341 (1979).

    Article  CAS  Google Scholar 

  14. Stewert, C. P. et al. Fedn Proc. 40, 362 (1981).

    Google Scholar 

  15. Krasny, E. J. Jr, Halm, D. R. & Frizzell, R. A. Fedn Proc. 41, 1261 (1982).

    Google Scholar 

  16. O'Neil, R. G. Fedn Proc. 41, 1006 (1982).

    Google Scholar 

  17. Nagel, W. Biochim. biophys. Acta 552, 346–357 (1979).

    Article  CAS  Google Scholar 

  18. Kirk, K. L., Halm, D. C. & Dawson, D. C. Nature 287, 237–239 (1980).

    Article  ADS  CAS  Google Scholar 

  19. Kirk, K. L. & Dawson, D. C. Fedn Proc. 40, 357 (1981).

    Google Scholar 

  20. Armstrong, C. M. Biophys. J. 15, 932–933 (1975).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Musch, M., Orellana, S., Kimberg, L. et al. Na+ −K+ −Cl co-transport in the intestine of a marine teleost. Nature 300, 351–353 (1982). https://doi.org/10.1038/300351a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/300351a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing