Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Control of cytoplasmic actin gel–sol transformation by gelsolin, a calcium-dependent regulatory protein

Abstract

The peripheral cytoplasm of macrophages is involved in the control of locomotion, secretion and endocytosis, events common to many eukaryotic cells. During these activities, the cortical cytoplasm, which contains numerous actin filaments1,2, appears to undergo reversible gel–sol transformations3: cycles of gelation and solation are demonstrable in suitably prepared macrophage extracts, and the gels contain tangled actin filaments4. These changes in consistency of cytoplasmic actin may regulate motile events in the macrophage periphery. Calcium in micromolar concentrations prevents gelation of crude macrophage cytoplasmic extracts4, providing a possible link to abundant indirect evidence implicating calcium in the regulation of locomotion, secretion and endocytosis5. Similar calcium-sensitive gelation phenomena occur in crude cell extracts from diverse cell types and may have a relevance for control of cell movements in general6–11. Actin gelation results from the cross-linking of actin filaments (F-actin) by other proteins. In macrophages, a high molecular weight actin-binding protein (ABP) is the principal actin cross-linking protein12. Cross-linking of actin by these purified actin-binding proteins, however, is insensitive to changes in the calcium concentration4,12, so that another factor must mediate the expression of a calcium effect. We have now isolated such a calcium-dependent regulatory protein from macrophages and call it gelsolin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Allison, A. C., Davies, P. & De Petris, S. Nature new Biol. 232, 153–155 (1971).

    Article  ADS  CAS  Google Scholar 

  2. Reaven, E. P. & Axline, S. G. J. Cell Biol. 59, 12–27 (1973).

    Article  CAS  Google Scholar 

  3. Lewis, W. H. Arch. exp. Zellforsch. 23, 1–13 (1939).

    Google Scholar 

  4. Stossel, T. P. & Hartwig, J. H. J. Cell Biol. 68, 602–612 (1976).

    Article  CAS  Google Scholar 

  5. Douglas, W. W. Br. J. Pharmac. 34, 451–474 (1968).

    Article  CAS  Google Scholar 

  6. Pollard, T. D. J. Cell Biol. 68, 579–601 (1976).

    Article  CAS  Google Scholar 

  7. Taylor, D. L., Reynolds, G. T. & Allen, R. D. Expl Cell Res. 101, 127–133 (1976).

    Article  CAS  Google Scholar 

  8. Taylor, D. L. & Condeelis, J. J. Cell Biol. 74, 901–927 (1977).

    Article  Google Scholar 

  9. Bryan, J. & Kane, R. E. J. molec. Biol. 125, 207–224 (1978).

    Article  CAS  Google Scholar 

  10. Mimura, N. & Asano, A. Nature 272, 273–275 (1978).

    Article  ADS  CAS  Google Scholar 

  11. Ishiura, M. & Okada, Y. J. Cell Biol. 80, 466–480 (1979).

    Article  Google Scholar 

  12. Brotschi, E. A., Hartwig, J. H. & Stossel, T. P. J. biol Chem. 253, 8988–8993 (1978).

    CAS  PubMed  Google Scholar 

  13. Wang, K. Biochemistry 16, 1857–1865 (1977).

    Article  CAS  Google Scholar 

  14. Spudich, J. A. & Watt, S. J. biol. Chem. 245, 4866–4871 (1971).

    Google Scholar 

  15. Lowry, D. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. J. boil. Chem. 193, 265–275 (1951).

    CAS  Google Scholar 

  16. Laemmli, U. K. Nature 227, 630–685 (1970).

    Article  ADS  Google Scholar 

  17. Perrin, D. D. & Sayce, I. G. Talanta 14, 833–842 (1967).

    Article  CAS  Google Scholar 

  18. Potter, J. D. & Gergley, J. J. biol. Chem. 250, 4628–4633 (1975).

    CAS  PubMed  Google Scholar 

  19. Flory, P. J. J. Am. chem. Soc. 63, 3096–3100 (1941).

    Article  CAS  Google Scholar 

  20. Hartwig, J. H. & Stossel, T. P. J. molec. Biol. (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, H., Stossel, T. Control of cytoplasmic actin gel–sol transformation by gelsolin, a calcium-dependent regulatory protein. Nature 281, 583–586 (1979). https://doi.org/10.1038/281583a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/281583a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing