Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Lost Pacifica continent

Abstract

THE Alpine mountain chain is generally accepted to be the product of continent–continent collisions. In this belt the zone of recent tectonic activity is wide (up to 2,000 km in Tibet) and crustal thickness in places is 1.5–2 times the average continental crust, presumably due to the inability of light continental material to sink into the astheosphere. Under the Himalayas, for example, the crust is 70 km thick1. Furthermore, as indicated by seismicity, the active collision zone here includes not only the highly deformed Himalaya belt but also the entire Tibet plateau. Major wide mountain belts exist, morphologically similar to the Alpine belt, in regions which do not experience continental collision, such as western North America, Alaska, east Siberia and the Andes. The crustal thickness here can also be very great, up to 70 km in the Andes2. All are seismically active, wide, highly deformed and include high plateaus of various sizes. Many of these wide erogenic belts also exhibit great geological complexities which are not simply explained by the model of an oceanic lithosphere under-thrusting a continental lithosphere. We suggest, therefore, that the circum Pacific mountain belts may be the result of past continental collisions, similar to those associated with the Alpine belt. We summarise the evidence for the incorporation of past continental masses around the Pacific Ocean. Holmes3 has given a compelling case for large continental land masses during parts of late Palaeozoic to early Tertiary to the west of North America such as Cascadia and Llanoria4. The land includes conglomerates derived from crystalline sialic rocks which have since disappeared. Hamilton5 and Davis and Armstrong6 suggested that the Klamaths were originally some distance offshore to the west and that the Permo Triassic Sonoma Orogeny results from an arc continent collision.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Narain, H. Tectonophysics 20, 249 (1913).

    Article  ADS  Google Scholar 

  2. James, D. E. J. geophys. Res. 76, 3246 (1971).

    Article  ADS  Google Scholar 

  3. Holmes, A. Principles of Physical Geology (Ronald, New York, 1965).

    Google Scholar 

  4. Schuchert, C. & Dunbar, C. O. Outlines of Historical Geology (Wiley, New York, 1950).

    Google Scholar 

  5. Hamilton, W. Geol. Soc. Am. Bull. 80, 2409 (1969).

    Article  ADS  Google Scholar 

  6. Fischer, J. F. Geotimes 21, 18 (1976).

    Google Scholar 

  7. Monger, J. W. H. & Ross, C. A. Can. J. Earth Sci. 8, 259 (1971).

    Article  ADS  Google Scholar 

  8. Jones, D. L. Irwin, W. P. & Ovenshine, A. T. U.S. Geol. Surv. Prof. Paper, 800B, B211 (1972).

    Google Scholar 

  9. Richards, H. G. Am. Ass. Petrol. Geol. Bull. 58, 79 (1974).

    Google Scholar 

  10. Symond, D. T. A. Can. geol. Survey Paper 71–24, 11 (1971).

    Google Scholar 

  11. Irving, E. & Yole, R. W. Ottawa, Earth Phys. Branch Pubs. 42, 87 (1972).

    Google Scholar 

  12. Hillhouse, J. Can. J. Earth Sci. (submitted).

  13. Jones, D. L., Silberling, N. J. & Hillhouse, J. Can. J. Earth Sci. (in the press).

  14. Churkin, M. & Eberlein, G. D. Bull. geol. Soc. Am. 88, 769 (1977).

    Article  Google Scholar 

  15. Cristi, J. M. Geol. Soc. Am. Mem. 65, 187 (1956).

    Google Scholar 

  16. Weeks, L. G., Am. Ass. Petrol. geol. Bull. 31, 1194 (1947).

    Google Scholar 

  17. Marks, J. G. Geol. Soc. Am. Mem. 65, 277 (1965).

    Google Scholar 

  18. Tschopp, H. J. Geol. Soc. Am. Mem. 65, 253 (1956).

    Google Scholar 

  19. Ahlfeld, F. Geol. Soc. Am. Mem. 65, 171 (1965).

    Google Scholar 

  20. Gose, W. A. & Swartz, D. G. Geology 5, 505 (1977).

    Article  ADS  Google Scholar 

  21. James, D. E. Scient. Am. 229, 61 (1973).

    Article  ADS  Google Scholar 

  22. McElhinny, M. W. Palaeomagnetism and Plate Tectonics, (Cambridge University Press, Cambridge 1973).

    Google Scholar 

  23. Hamilton, W. Geol. Soc. Am. Bull. 81, 2553, (1970).

    Article  ADS  Google Scholar 

  24. Kawai, N. Hirooka, K. & Nakajima, T. Palaeogeog. Palaeoclim. Palaeoecol. 6, 277 (1969).

    Article  ADS  CAS  Google Scholar 

  25. Hurley, P. M. Eos 52, 356, (1971).

    Google Scholar 

  26. Larson, R. L. & Chase, C. G. Geol. Soc. Am. Bull. 83, 3627 (1972).

    Article  ADS  Google Scholar 

  27. Hilde, T. W. C. Uyeda, S. & Kroenke, L. in Geodynamics: Progress and Prospects (ed. Drake, C. L.) 238 (AGU, Washington, 1976).

    Google Scholar 

  28. Windhausen, A. Geologia Argentina 2, (1931).

  29. Houtz, R. & Davey, F. J. J. geophys. Res. 78, 3448 (1973).

    Article  ADS  Google Scholar 

  30. Winterer, E. L. in Geophysics of the Pacific Ocean and its Margin, (eds Sutton, G. H., Manghanani, M. H. & Moberly, R.) (AGU Monograph 19, 1976).

    Google Scholar 

  31. Nur, A. & Ben-Avraham, Z. Eos 58, 502 (1977).

    Google Scholar 

  32. Melville, R. Nature 211, 116 (1966).

    Article  ADS  Google Scholar 

  33. Hughes, T. Palaeogeog. Palaeoclim. Palaeocol. 18, 1 (1975).

    Article  ADS  Google Scholar 

  34. Fooden, J. Science 175, 894 (1972).

    Article  ADS  CAS  Google Scholar 

  35. McGowran, B. Science 183, 759 (173).

  36. Croizat, L. Panbiogeography, 3 vols (Croizat, Caracas, 1958).

    Google Scholar 

  37. Martin, P. G. in Biology of Marsupials, (ed. Stonehouse, B.) 97–116 (University Park Press, Maryland, 1976).

    Google Scholar 

  38. Nelson, G. Syst. Zoology 24, 490 (1975).

    Article  Google Scholar 

  39. Dietz, R. S. & Holden, J. C. J. geophys. Res. 75, 4939 (1970).

    Article  ADS  Google Scholar 

  40. Uyeda, S. & Ben-Avraham, Z. Nature phys. Sci. 240, 176 (1972).

    Article  ADS  Google Scholar 

  41. Ben-Avraham, Z. & Uyeda, S. Earth planet. Sci. Lett. 18, 365 (1973).

    Article  ADS  Google Scholar 

  42. Hayes, D. E. & Ringis, J. Nature 243, 454 (1973).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

NUR, A., BEN-AVRAHAM, Z. Lost Pacifica continent. Nature 270, 41–43 (1977). https://doi.org/10.1038/270041a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/270041a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing