Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Seismic evidence for small-scale dynamics in the lowermost mantle at the root of the Hawaiian hotspot

Abstract

The hot thermal boundary layer produced by heat transport from the Earth's core to the base of the mantle is thought to contain strong horizontal shear flows and to nucleate instabilities in which hot material rises into the convecting mantle as thermal plumes1,2,3. A recent study4,5 proposes that the Hawaiian plume is deflected by mantle convection and, in the lowermost mantle, is located to the southeast of its surface manifestation. Here we present seismic data that densely sample, with core-reflected shear waves, a region beneath the central Pacific Ocean which includes the predicted location of the deflected root of the Hawaiian hotspot. Our mapping of the structure in this region of the lowermost mantle reveals strong lateral gradients in shear-wave velocity and anisotropic shear-wave polarization direction over distances of only several hundred kilometres. We interpret these gradients as being indicative of small-scale dynamical structure in the thermal boundary layer, where vertical flow into the Hawaiian plume at its root is accompanied by horizontal flow towards the plume.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Geometry of ray-paths.
Figure 2: Map views of the travel-time residuals and anisotropy measurements plotted at the ScS CMB reflection points.
Figure 3: Two seismograms from different events and stations which illustrate the presence of variable anisotropy across our study region.
Figure 4: A cartoon of the boundary layer at the CMB that incorporates the differential travel time and anisotropy observations.

Similar content being viewed by others

References

  1. Stacey, F. D. & Loper, D. E. The thermal boundary layer interpretation of D″ and its role as a plume source. Phys. Earth Planet. Inter. 33, 45–55 (1983).

    Article  ADS  Google Scholar 

  2. Sleep, N. H. Hotspots and mantle plumes: Some phenomenology. J. Geophys. Res. 95, 6715–6736 (1990).

    Article  ADS  Google Scholar 

  3. Loper, D. E. & Lay, T. The core-mantle boundary region. J. Geophys. Res. 100, 6397–6420 (1995).

    Article  ADS  Google Scholar 

  4. Steinberger, B. M. Motion of Hotspots and Changes of the Earth's Rotation Axis Caused by a Convecting Mantle. Thesis, Harvard Univ. (1996).

    Google Scholar 

  5. Steinberger, B. & O'Connell, R. J. Advection of plumes in mantle flow: Implications for hotspot motion, mantle viscosity and plume distribution. Geophys. J. Int. 132, 412–434 (1998).

    Article  ADS  Google Scholar 

  6. Lay, T., Garnero, E. J., Williams, Q., Kellogg, L. & Wysession, M. E. in The Core-Mantle Boundary (eds Gurnis, M., Buffett, B. A., Knittle, E. & Wysession, M.) 299–318 (Geodynamics Ser., Vol. 28, Am. Geophys. Union, Washington DC, 1998).

    Book  Google Scholar 

  7. Silver, P. G. Seismic anisotropy beneath the continents: Probing the depths of geology. Annu. Rev. Earth Planet. Sci. 24, 385–432 (1996).

    Article  ADS  CAS  Google Scholar 

  8. Ansel, V. & Nataf, H.-C. Anisotropy beneath 9 stations of the GEOSCOPE broadband network as deduced from shear-wave splitting. Geophys. Res. Lett. 16, 409–412 (1989).

    Article  ADS  Google Scholar 

  9. Su, W.-J., Woodward, R. & Dziewonski, A. M. Degree 12 model of shear velocity heterogeneity in the mantle. J. Geophys. Res. 99, 6945–6980 (1994).

    Article  ADS  Google Scholar 

  10. Li, X. D. & Romanowicz, B. Global mantle shear velocity model developed using nonlinear asymptotic coupling theory. J. Geophys. Res. 101, 22245–22272 (1996).

    Article  ADS  Google Scholar 

  11. Masters, T. G., Johnson, S., Laske, G. & Bolton, H. Ashear-velocity model of the mantle. Phil. Trans. R. Soc. Lond. A 354, 1385–1411 (1996).

    Article  ADS  Google Scholar 

  12. Grand, S. P., van der Hilst, R. D. & Widiyantoro, S. Global seismic tomography: A snapshot of convection in the Earth. GSA Today 7, 1–7 (1997).

    Google Scholar 

  13. Ritsema, J., Garnero, E. & Lay, T. Astrongly negative shear velocity gradient and lateral variability in the lowermost mantle beneath the Pacific. J. Geophys. Res. 102, 20395–20411 (1997).

    Article  ADS  Google Scholar 

  14. Revenaugh, J. S. & Meyer, R. Seismic evidence of partial melt within a possibly ubiquitous low velocity layer at the base of the mantle. Science 277, 670–673 (1997).

    Article  CAS  Google Scholar 

  15. Vidale, J. E. & Hedlin, M. A. H. Evidence for partial melt at the core-mantle boundary north of Tonga from the strong scattering of seismic waves. Nature 319, 682–685 (1998).

    Article  ADS  Google Scholar 

  16. Mori, J. & Helmberger, D. V. Localized boundary layer below the mid-Pacific velocity anomaly identified from a PcP precursor. J. Geophys. Res. 100, 20359–20365 (1995).

    Article  ADS  Google Scholar 

  17. Garnero, E. J. & Helmberger, D. V. Seismic detection of a thin laterally varying boundary layer at the base of the mantle beneath the central-Pacific. Geophys. Res. Lett. 23, 977–980 (1996).

    Article  ADS  Google Scholar 

  18. Williams, Q. & Garnero, E. J. Seismic evidence for partial melt at the base of Earth's mantle. Science 273, 1528–1530 (1996).

    Article  ADS  CAS  Google Scholar 

  19. Karato, S.-I. in Rheology of Solids and of the Earth (eds Karato, S. & Toriumi, M.) 393–422 (Oxford Univ. Press, 1989).

    Google Scholar 

  20. Vinnik, L., Romanowicz, B., Le Stunff, Y. & Makeyeva, L. Seismic anisotropy in the D″ layer. Geophys. Res. Lett. 22, 1657–1660 (1995).

    Article  ADS  Google Scholar 

  21. Ritsema, J., Lay, T., Garnero, E. & Benz, H. Seismic anisotropy in the lowermost mantle beneath the Pacific. Geophys. Res. Lett. 25, 1229–1232 (1998).

    Article  ADS  Google Scholar 

  22. Dziewonski, A. M. & Anderson, D. L. Preliminary reference earth model. Phys. Earth Planet. Inter. 25, 297–356 (1981).

    Article  ADS  Google Scholar 

  23. Pulliam, J. & Sen, M. K. Seismic anisotropy in the core-mantle transition zone. Geophys. J. Int. (in the press).

  24. Lay, T., Williams, Q. & Garnero, E. J. The core-mantle boundary layer and deep earth dynamics. Nature 392, 461–468 (1998).

    Article  ADS  CAS  Google Scholar 

  25. Kendall, J.-M. & Silver, P. G. Constraints from seismic anisotropy on the nature of the lowermost mantle. Nature 381, 409–412 (1996).

    Article  ADS  CAS  Google Scholar 

  26. Matzel, E., Sen, M. K. & Grand, S. P. Evidence for anisotropy in the deep mantle beneath Alaska. Geophys. Res. Lett. 23, 2417–2420 (1996).

    Article  ADS  Google Scholar 

  27. Holland, K. G. & Ahrens, T. J. Melting of (Mg,Fe)2SiO4at the core-mantle boundary of the Earth. Science 275, 1623–1625 (1997).

    Article  CAS  Google Scholar 

  28. Silver, P. G. & Chan, W. W. Shear wave splitting and subcontinental mantle deformation. J. Geophys. Res. 96, 16429–16454 (1991).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank B. Steinberger for providing a preprint and details of his calculations for the Hawaiian hotspot, and R. Hartog for providing several codes for measuring anisotropy. Data were obtained through the IRIS, BDSN and TERRAscope data centres. This work was supported by the US NSF.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Russell, S., Lay, T. & Garnero, E. Seismic evidence for small-scale dynamics in the lowermost mantle at the root of the Hawaiian hotspot. Nature 396, 255–258 (1998). https://doi.org/10.1038/24364

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/24364

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing