Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Molecular Targets for Therapy (MTT)

Inhibition of human leukemia in an animal model with human antibodies directed against vascular endothelial growth factor receptor 2. Correlation between antibody affinity and biological activity

Abstract

Vascular endothelial growth factor (VEGF) and its receptors (VEGFR) have been implicated in promoting solid tumor growth and metastasis via stimulating tumor-associated angiogenesis. We recently showed that certain ‘liquid’ tumors such as leukemia not only produce VEGF, but also express functional VEGFR, resulting in an autocrine loop for tumor growth and propagation. A chimeric anti-VEGFR2 (or kinase insert domain-containing receptor, KDR) antibody, IMC-1C11, was shown to be able to inhibit VEGF-induced proliferation of human leukemia cells in vitro, and to prolong survival of nonobese diabetic-severe combined immune deficient (NOD-SCID) mice inoculated with human leukemia cells. Here we produced two fully human anti-KDR antibodies (IgG1), IMC-2C6 and IMC-1121, from Fab fragments originally isolated from a large antibody phage display library. These antibodies bind specifically to KDR with high affinities: 50 and 200 pM for IMC-1121 and IMC-2C6, respectively, as compared to 270 pM for IMC-1C11. Like IMC-1C11, both human antibodies block VEGF/KDR interaction with an IC50 of approximately 1 nM, but IMC-1121 is a more potent inhibitor to VEGF-stimulated proliferation of human endothelial cells. These anti-KDR antibodies strongly inhibited VEGF-induced migration of human leukemia cells in vitro, and when administered in vivo, significantly prolonged survival of NOD-SCID mice inoculated with human leukemia cells. It is noteworthy that the mice treated with antibody of the highest affinity, IMC-1121, survived the longest period of time, followed by mice treated with IMC-2C6 and IMC-1C11. Taken together, our data suggest that anti-KDR antibodies may have broad applications in the treatment of both solid tumors and leukemia. It further underscores the efforts to identify antibodies of high affinity for enhanced antiangiogenic and antitumor activities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Ferrara N . Molecular and biological properties of vascular endothelial growth factor. J Mol Med 1999; 77: 527–543.

    Article  CAS  PubMed  Google Scholar 

  2. Klagsbrum M, D'Amore PA . Vascular endothelial growth factor and its receptors. Cytokine Growth Factor Rev 1996; 7: 259–270.

    Article  Google Scholar 

  3. Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z . Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 1999; 13: 9–22.

    Article  CAS  PubMed  Google Scholar 

  4. Margolin K . Inhibition of vascular endothelial growth factor in the treatment of solid tumors. Curr Oncol Rep 2002; 4: 20–28.

    Article  PubMed  Google Scholar 

  5. Zhu Z, Bohlen P, Witte L . Clinical development of angiogenesis inhibitors to vascular endothelial growth factor and its receptors as cancer therapeutics. Curr Cancer Drug Targets 2002; 2: 135–156.

    Article  CAS  PubMed  Google Scholar 

  6. Zogakis TG, Libutti SK . General aspects of anti-angiogenesis and cancer therapy. Exp Opin Biol Ther 2001; 1: 253–275.

    Article  CAS  Google Scholar 

  7. Aguayo A, Kantarjian H, Manshouri T, Gidel C, Estey E, Thomas D et al. Angiogenesis in acute and chronic leukemias and myelodysplastic syndromes. Blood 2000; 96: 2240–2245.

    CAS  PubMed  Google Scholar 

  8. Perez-Atayde AR, Sallan SE, Tedrow U, Connors S, Allred E, Folkman J . Spectrum of tumor angiogenesis in the bone marrow of children with acute lymphoblastic leukemia. Am J Pathol 1997; 150: 815–821.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Vacca A, Ribatti D, Roncali L, Ranieri G, Serio G, Silvestris F et al. Bone marrow angiogenesis and progression in multiple myeloma. Br J Haematol 1994; 87: 503–508.

    Article  CAS  PubMed  Google Scholar 

  10. Pruneri G, Bertolini F, Soligo D, Carboni N, Cortelezzi A, Ferrucci PF et al. Angiogenesis in myelodysplastic syndromes. Br J Cancer 1999; 81: 1398–1401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Padro T, Ruiz S, Bieker R, Burger H, Steins M, Kienast J et al. Increased angiogenesis in the bone marrow of patients with acute myeloid leukemia. Blood 2000; 95: 2637–2644.

    CAS  PubMed  Google Scholar 

  12. Hussong JW, Rodgers GM, Shami PJ . Evidence of increased angiogenesis in patients with acute myeloid leukemia. Blood 2000; 95: 309–313.

    CAS  PubMed  Google Scholar 

  13. Fiedler W, Graeven U, Ergun S, Verago S, Kilic N, Stockschlader M et al. Vascular endothelial growth factor, a possible paracrine growth factor in human acute myeloid leukemia. Blood 1997; 89: 1870–1875.

    CAS  PubMed  Google Scholar 

  14. Bellamy WT, Richter L, Frutiger Y, Grogan TM . Expression of vascular endothelial growth factor and its receptors in hematopoietic malignancies. Cancer Res 1999; 59: 728–733.

    CAS  PubMed  Google Scholar 

  15. Aguayo A, Estey E, Kantarjian H, Mansouri T, Gidel C, Keating M et al. Cellular vascular endothelial growth factor is a predictor of outcome in patients with acute myeloid leukemia. Blood 1999; 94: 3717–3721.

    CAS  PubMed  Google Scholar 

  16. Aguayo A, O'Brien S, Keating M, Manshouri T, Gidel C, Barlogie B et al. Clinical relevance of intracellular vascular endothelial growth factor levels in B-cell chronic lymphocytic leukemia. Blood 2000; 96: 768–770.

    CAS  PubMed  Google Scholar 

  17. Ferrajoli A, Manshouri T, Estrov Z, Keating MJ, O'Brien S, Lerner S et al. High levels of vascular endothelial growth factor receptor-2 correlate with shortened survival in chronic lymphocytic leukemia. Clin Cancer Res 2001; 7: 795–799.

    CAS  PubMed  Google Scholar 

  18. Dias S, Hattori K, Zhu Z, Heissig B, Choy M, Lane W et al. Autocrine stimulation of VEGFR-2 activates human leukemia cell growth and migration. J Clin Invest 2000; 106: 511–521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Masood R, Cai J, Zheng T, Smith DL, Hinton DR, Gill PS . Vascular endothelial growth factor (VEGF) is an autocrine growth factor for VEGF receptor-positive human tumors. Blood 2001; 98: 1904–1913.

    Article  CAS  PubMed  Google Scholar 

  20. Bellamy WT, Richter L, Sirjani D, Roxas C, Glinsmann-Gibson B, Frutiger Y et al. Vascular endothelial cell growth factor is an autocrine promoter of abnormal localized immature myeloid precursors and leukemia progenitor formation in myelodysplastic syndromes. Blood 2001; 97: 1427–1434.

    Article  CAS  PubMed  Google Scholar 

  21. Fusetti L, Pruneri G, Gobbi A, Rabascio C, Carboni N, Peccatori F et al. Human myeloid and lymphoid malignancies in the non-obese diabetic/severe combined immunodeficiency mouse model: frequency of apoptotic cells in solid tumors and efficiency and speed of engraftment correlate with vascular endothelial growth factor production. Cancer Res 2000; 60: 2527–2534.

    CAS  PubMed  Google Scholar 

  22. Fiedler W, Staib P, Kuse R, Duhrsen U, Flasshove M, Cavalli F et al. Role of angiogenesis inhibitors in acute myeloid leukemia. Cancer J Supl 2001; 3: S1 29–S133.

    Google Scholar 

  23. Bellamy WT . Expression of vascular endothelial growth factor and its receptors in multiple myeloma and other hematopoietic malignancies. Semin Oncol 2001; 28: 551–559.

    Article  CAS  PubMed  Google Scholar 

  24. List A . Vascular endothelial growth factor signaling pathway as an emerging target in hematologic malignancies. The Oncologist 2001; 6: 24–31.

    Article  CAS  PubMed  Google Scholar 

  25. Dias S, Hattori K, Heissig B, Zhu Z, Wu Y, Witte L et al. Inhibition of both paracrine and autocrine VEGF/VEGFR-2 signaling pathways is essential to induce long-term remission of xenotransplanted human leukemias. Proc Natl Acad Sci USA 2001; 98: 10857–10862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mesters RM, Padro T, Bieker R, Steins M, Kreuter M, Goner M et al. Stable remission after administration of the receptor tyrosine kinase inhibitor SU5416 in a patient with refractory acute myeloid leukemia. Blood 2001; 98: 241–243.

    Article  CAS  PubMed  Google Scholar 

  27. Smolich BD, Yuen HA, West KA, Giles FJ, Albitar M, Cherrington JM . The antiangiogenic protein kinase inhibitors SU5416 and SU6668 inhibit the SCF receptor (c-kit) in a human myeloid leukemia cell line and in acute myeloid leukemia blasts. Blood 2001; 97: 1413–1421.

    Article  CAS  PubMed  Google Scholar 

  28. Zhu Z, Hicklin DJ, Bohlen B, Waskal H, Witte L . Clinical development of antibody-based receptor tyrosine kinase inhibitors for cancer therapy. In: Recent Research Developments in Cancer, Vol. 3. Trivandrum: Transworld Research Network, 2001; pp 369–384.

    Google Scholar 

  29. Glennie MJ, Johnson PWM . Clinical trials of antibody therapy. Immunol Today 2000; 21: 403–410.

    Article  CAS  PubMed  Google Scholar 

  30. Zhu Z, Rockwell P, Lu D, Kotanides H, Pytowski B, Hicklin DJ et al. Inhibition of vascular endothelial growth factor-induced receptor activation with anti-kinase insert domain-containing receptor single-chain antibodies from a phage display library. Cancer Res 1998; 58: 3209–3214.

    CAS  PubMed  Google Scholar 

  31. Zhu Z, Lu D, Kotanides H, Santiago A, Jimenez X, Simcox T et al. Inhibition of vascular endothelial growth factor induced mitogenesis of human endothelial cells by a chimeric anti-kinase insert domain-containing receptor antibody. Cancer Lett 1999; 136: 203–213.

    Article  CAS  PubMed  Google Scholar 

  32. Lu D, Jimenez X, Zhang H, Bohlen P, Witte L, Zhu Z . Selection of high affinity human neutralizing antibodies to VEGFR2 from a large antibody phage display library for antiangiogenesis therapy. Int J Cancer 2002; 97: 393–399.

    Article  CAS  PubMed  Google Scholar 

  33. Lu D, Kussie P, Pytowski B, Persaud K, Bohlen P, Witte L et al. Identification of the residues in the extracellular region of KDR important for interaction with vascular endothelial growth factor and neutralizing anti-KDR antibodies. J Biol Chem 2000; 275: 14321–14330.

    Article  CAS  PubMed  Google Scholar 

  34. De Haard HJ, va Neer N, Reurs A, Hufton SE, Roovers RC, Henderikx de P et al. A large non-immunized human Fab fragment phage library that permit rapid isolation and kinetic analysis of high affinity antibodies. J Biol Chem 1999; 274: 18218–18230.

    Article  CAS  PubMed  Google Scholar 

  35. Hattori K, Heissig B, Wu Y, Dias S, Tejada R, Ferris B et al. Placenta growth factor reconstitutes hematopoiesis by recruiting VEGFR1+ stem cells from bone marrow microenvironment. Nat Med 2002; 8: 841–849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Luttun A, Tjwa M, Moons L, Wu Y, Angelillo-Scherrer A, Liao F et al. Revascularization of ischemic tissues by PIGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-flt1. Nat Med 2002; 8: 831–840.

    Article  CAS  PubMed  Google Scholar 

  37. Hiratsuka S, Maru Y, Okada A, Seiki M, Noda T, Shibuya M . Involvement of Flt-1 tyrosine kinase (vascular endothelial growth factor receptor-1) in pathological angiogenesis. Cancer Res 2001; 61: 1207–1213.

    CAS  PubMed  Google Scholar 

  38. Witte L, Hicklin DJ, Zhu Z, Pytowski B, Kotanides H, Rockwell P et al. Monoclonal antibodies targeting the VEGF receptor-2 (Flk1/KDR) as an anti-angiogenic therapeutic strategy. Cancer Metastasis Rev 1998; 17: 155–161.

    Article  CAS  PubMed  Google Scholar 

  39. Prewett M, Huber J, Li Y, Santiago A, O'Connor W, King K et al. Antivascular endothelial growth factor receptor (Fetal Liver Kinase 1) monoclonal antibody inhibits tumor angiogenesis and growth of several mouse and human tumors. Cancer Res 1999; 59: 5209–5218.

    CAS  PubMed  Google Scholar 

  40. Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 1993; 362: 841–844.

    Article  CAS  PubMed  Google Scholar 

  41. Kanai T, Konno H, Tanaka T, Baba M, Matsumoto K, Nakamura S et al. Anti-tumor and anti-metastatic effects of human-vascular-endothelial-growth-factor-neutralizing antibody on human colon and gastric carcinoma xenotransplanted orthotopically into nude mice. Int J Cancer 1998; 77: 933–936.

    Article  CAS  PubMed  Google Scholar 

  42. Fong TA, Shawver LK, Sun L, Tang C, App H, Powell JT et al. SU5416 is a potent and selective inhibitor of the vascular endothelial growth factor receptor (Flk-1/KDR) that inhibits tyrosine kinase catalysis, tumor vascularization, and growth of multiple tumor types. Cancer Res 1999; 59: 99–106.

    CAS  PubMed  Google Scholar 

  43. Wood JM, Bold G, Buchdunger E, Cozens R, Ferrari S, Frei J et al. PTK787/ZK 222584, a novel and potent inhibitor of vascular endothelial growth factor receptor tyrosine kinases, impairs vascular endothelial growth factor-induced responses and tumor growth after oral administration. Cancer Res 2000; 60: 2178–2189.

    CAS  PubMed  Google Scholar 

  44. Pavco PA, Bouhana KS, Gallegos AM, Agrawal A, Blanchard KS, Grimm SL et al. Antitumor and antimetastatic activity of ribozymes targeting the messenger RNA of vascular endothelial growth factor receptors. Clin Cancer Res 2000; 6: 2094–2103.

    CAS  PubMed  Google Scholar 

  45. Gerber HP, Malik AK, Solar GP, Sherman D, Liang XH, Meng G et al. VEGF regulates hemotopoietic stem cell survial by an internal autocrine loop mechanism. Nature 2002; 417: 954–958.

    Article  CAS  PubMed  Google Scholar 

  46. Ziegler BL, Valtieri M, Porada GA, De Maria R, Muller R, Masella B et al. KDR receptor: a key marker defining hematopoietic stem cells. Science 1999; 285: 1553–1558.

    Article  CAS  PubMed  Google Scholar 

  47. Lu D, Jimenez X, Zhang H, Wu Y, Bohlen P, Writte L et al. Complete inhibition of vascular endothelial growth factor (VEGF) activities with a bifunctional diabody directed against both VEGF kinase receptors, fms-like tyrosine kinase receptor and kinase insert domain-containing receptor. Cancer Res 2001; 61: 7002–7008.

    CAS  PubMed  Google Scholar 

  48. Kanno S, Oda N, Abe M, Terai Y, Ito M, Shitara K et al. Roles of two VEGF receptors, Flt-1 and KDR, in the signal transduction of VEGF effects in human vascular endothelial cells. Oncogene 2000; 19: 2138–2146.

    Article  CAS  PubMed  Google Scholar 

  49. Soker S, Kaefer M, Johnson M, Klagsbrun M, Atala A, Freeman MR . Vascular endothelial growth factor-mediated autocrine stimulation of prostate tumor cells coincides with progression to a malignant phenotype. Am J Pathol 2001; 159: 651–659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Boocock CA, Charnock-Jones DS, Sharkey AM, Mclaren J, Barker PJ, Wright KA et al. Expression of vascular endothelial growth factor and its receptors flt and kdr in ovarian carcinoma. J Natl Cancer Inst 1995; 87: 506–516.

    Article  CAS  PubMed  Google Scholar 

  51. Itakura J, Ishiwata T, Shen B, Kornmann M, Korc M . Concomitant overexpression of vascular endothelial growth factor and its receptors in pancreatic cancer. Int J Cancer 2000; 85: 27–34.

    Article  CAS  PubMed  Google Scholar 

  52. Price DJ, Miralem T, Jiang S, Steinberg R, Avraham H . Role of vascular endothelial growth factor in the stimulation of cellular invasion and signaling of breast cancer cells. Cell Growth Differ 2001; 12: 129–135.

    CAS  PubMed  Google Scholar 

  53. Lacal PM, Failla CM, Pagani E, Odorisio T, Schietroma C, Falcinelli S et al. Human melanoma cells secrete and respond to placenta growth factor and vascular endothelial growth factor. J Invest Dermatol 2000; 115: 1000–1007.

    Article  CAS  PubMed  Google Scholar 

  54. Little M, Kipriyanov SM, Gall FL, Moldenhauer G . Of mice and men: hybridoma and recombinant antibodies. Immunol Today 2000; 21: 364–370.

    Article  CAS  PubMed  Google Scholar 

  55. Hoogenboom HR, Chames P . Natural and designer binding sites made by phage display technology. Immunol Today 2000; 21: 371–378.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from Leukemia and Lymphoma Society and American Cancer Society to S. R.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Z., Hattori, K., Zhang, H. et al. Inhibition of human leukemia in an animal model with human antibodies directed against vascular endothelial growth factor receptor 2. Correlation between antibody affinity and biological activity. Leukemia 17, 604–611 (2003). https://doi.org/10.1038/sj.leu.2402831

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402831

Keywords

This article is cited by

Search

Quick links