Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rapid evolution of a unique family of primate ribonuclease genes

Abstract

We have traced the rapid molecular evolution of eosinophil–derived neurotoxin (EDN) and eosinophil cationic protein (ECP), two host defense proteins that are members of the mammalian ribonuclease gene family. The EDN/ECP gene pair arose from a recent duplication event that occurred after the divergence of New World and Old World monkeys. Since duplication, the genes encoding EDN and ECP have accumulated non–silent mutations at rates exceeding those of all other functional coding sequences studied in primates, while retaining both the structural and catalytic components required for ribonuclease activity. These results suggest that both EDN and ECP may be responding to unusual evolutionary constraints, which has prompted a reexamination of their physiologic function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Spry, C.J.F. Eosinophils: a comprehensive reviewandguide to thescientific and medical literature (Oxford University Press, Oxford, 1988).

    Google Scholar 

  2. Makino, S. & Fukuda, T. (eds). Eosinophils: biological and clinical aspects (CRC Press, FL, 1993).

    Google Scholar 

  3. Gleich, G.J. et al. Biochemical and functional similarities between human eosinophil-derived neurotoxin and eosinophil cationic protein: homology with ribonuclease. Proc. natn. Acad. Sci. U.S.A. 83, 3146–3150 (1986).

    Article  CAS  Google Scholar 

  4. Slifman, N.R., Loegering, D.A., McKean, D.J. & Gleich, G.J. Ribonuclease activity associated with human eosinophil-derived neurotoxin and eosinophil cationic protein. J. Immunol. 137, 2913–2917 (1986).

    CAS  PubMed  Google Scholar 

  5. Gullberg, U., Widegren, B., Arivason, U., Egesten, A. & Olsson, I. The cytotoxic eosinophil cationic protein (ECP) has ribonuclease activity. Biochem. Biophys. Res. Commun. 139, 1239–1242 (1986).

    Article  CAS  PubMed  Google Scholar 

  6. Rosenberg, H.F., Tenen, D.G. & Ackerman, S.J. Molecular cloning of the human eosinophil-derived neurotoxin: a member of the ribonuclease gene family. Proc. natn. Acad. Sci. U.S.A. 86, 4460–4464 (1989).

    Article  CAS  Google Scholar 

  7. Rosenberg, H.F., Ackerman, S.J. & Tenen, D.G. Human eosinophil cationic protein. Molecular cloning of a cytotoxin and helminthotoxin with ribonuclease activity. J. exp. Med. 170, 163–170 (1989).

    Article  CAS  PubMed  Google Scholar 

  8. Barker, R.L. et al. Eosinophil cationic protein cDNA. Comparison with other toxic cationic proteins and ribonucleases. J. Immunol. 143, 952–955 (1989).

    CAS  PubMed  Google Scholar 

  9. Hamann, K.J., Barker, R.L., Loegering, D.A. & Gleich, G.J. Seqeucne of human eosinophil-derived neurotoxin cDNA: identity of deduced amino acid sequence with human nonsecretory ribonucleases. Gene 83, 161–167 (1989).

    Article  CAS  PubMed  Google Scholar 

  10. Hamann, K.J. et al. Structure and chromosome localization of the human eosinophil-derived neurotoxin and eosinophil cationic protein genes: evidence for intronless coding sequences in the ribonuclease gene family. Genomics 7, 535–546 (1990).

    Article  CAS  PubMed  Google Scholar 

  11. Samuelson, L.C. et al. Isolation of the murine ribonuclease gene rib-1: structure and tissue specific expression in pancreas and parotid gland. Nucl. Acids Res. 19, 6935–6941 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kurachi, K., Davie, E.W., Strydom, D.J., Riordan, J.F. & Vallee, B.L. Sequence of the cDNA and gene for angiogenin, a human angiogenesis factor. Biochemistry 24, 5494–5499 (1985).

    Article  CAS  PubMed  Google Scholar 

  13. Haugg, M. & Schein, C.H. The DNA sequences of the human and hamster secretory ribonucleases determined with the polymerase chain reaction (PCR). Nucl. Acids Res. 20, 612 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. MacDonald, R.J., Stary, S.J. & Swift, G.H. Rat pancreatic ribonuclease messenger RNA. The nucleotide sequence of the entire mRNA and the derived amino acid sequence of the pre-enzyme. J. biol. Chem. 251, 14582–14585 (1982).

    Google Scholar 

  15. Blackburn, P. & Moore, S. in The Enzymes, (ed. Boyer, P.) 317–358 (Academic Press, New York, 1982).

    Google Scholar 

  16. Nei, M. & Gojobori, T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Molec. biol. Evol. 3, 418–426 (1986).

    CAS  PubMed  Google Scholar 

  17. Nei, M. Molecular Evolutionary Genetics (Columbia University Press, New York, 1987).

    Google Scholar 

  18. Li, H.-H. & Graur, D. Fundamentals of molecular evolution.(SinauerAssociates, Sunderland, 1991).

    Google Scholar 

  19. Sibley, C.G. & Ahlquist, J.E. The phytogeny of the hominoid primates as indicated by DNA-DNA hybridization. J.molec. Evol. 20, 2–15 (1984).

    Article  CAS  PubMed  Google Scholar 

  20. Whitfield, L.S., Lovell-Badge, R. & Goodfellow, P.N. Rapid sequence evolution of the mammalian sex-determining gene SRY. Nature 364, 713–715 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Retief, J.D. et al. Evolution of protamine P1 genes in primates. J. molec. Evol. (1993).

  22. Retief, J.D. & Dixon, G.H. Evolution of pro-protamine P2 genes in primates. Eur. J. Biochem. 214, 609–615 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. Li, W.H., Wu, C.-I. & Luo, C.-C. New method for estimating synonymous and nonsynonymous rates of nucleotide stubstitution considering the relative likelihood of nucleotide and codon changes. Molec. biol. Evol. 2, 150–174 (1985).

    PubMed  Google Scholar 

  24. Sorrentino, S. et al. Eosinophil-derived neurotoxin and human liver ribonuclease. Identity of structure and linkage of neurotoxicity to nuclease activity. J. biol. Chem. 267, 14589–14865 (1992).

    Google Scholar 

  25. Newton, D.L. et al. Toxicity of an anti-tumor ribonuclease to Purkinje neurons. J. Neurosci. 14, 538–544. (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Molina, H.A., Kierszenbaum, F., Hamann, K.J. & Gleich, G.J. Toxic effects produced or mediated by human eosinophil granule components on Trypanosoma cruzi. Am. Trop. med. Hyg. 38, 327–324 (1988).

    Google Scholar 

  27. Rosenberg, H.F. Recombinant eosinophil cationic protein (ECP): ribonuclease activity is not essential for cytotoxicity. J. biol. Chem. 270, 7876–7881 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Ardelt, W., Mikulski, S.M. & Shogen, K. Amino acid sequence of an anti-tumor protein from Ranapipiens oocytes and early embryos Homology to pancreatic ribonucleases. J. biol. Chem. 266, 245–251 (1991).

    CAS  PubMed  Google Scholar 

  29. Wu, Y., Mikulski, S.M., Ardelt, W., Rybak, S.M. & Youle, R.J. A cytotoxic ribonuclease.Study of the mechanism of onconase cytotoxicity. J. biol. Chem. 268, 10686–10693 (1993).

    CAS  PubMed  Google Scholar 

  30. Nitta, K. et al. Inhibition of cell proliferation by Rana catesbeiana and Rana japonica lectins belonging to the ribonuclease superfamily. Cancer Res. 54, 920–927 (1994).

    CAS  PubMed  Google Scholar 

  31. Di Donato, A., Cafaro, V. & D'Alessio, G. Ribonuclease A can be transformed into a dimeric ribonuclase with antitumor activity. J. biol. Chem. 269, 17394–17396 (1994).

    CAS  PubMed  Google Scholar 

  32. Laccetti, P. et al. Seminal ribonuclease inhibits tumor growth and reduced the metastatic potential of Lewis lung carcinoma. Cancer Res. 54, 4253–4256 (1994).

    CAS  PubMed  Google Scholar 

  33. Murphy, P.M. Molecular mimicry and the generation of host defense protein diversity. Cell 72, 823–826 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. Jermann, T.M., Opitz, J.G., Stackhouse, J. & Benner, S.A. Reconstructing the evolutionary history of the artiodactyl ribonuclease superfamily. Nature 374, 57–59 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosenberg, H., Dyer, K., Tiffany, H. et al. Rapid evolution of a unique family of primate ribonuclease genes. Nat Genet 10, 219–223 (1995). https://doi.org/10.1038/ng0695-219

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0695-219

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing