Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cut2 proteolysis required for sister-chromatid separation in fission yeast

Abstract

ALTHOUGH mitotic cyclins are well-known substrates for ubiquitin-mediated proteolysis at the metaphase–anaphase transition1–4, their degradation is not essential for separation of sister chromatids5–8; several lines of evidence suggest that proteolysis of other protein(s) is required, however4,6,9–11. Here we report the anaphase-specific proteolysis of the Schizosaccharomyces pombe Cut2 protein, which is essential for sister-chromatid separation12,13. Cut2 is located in the nucleus, where it is concentrated along the short metaphase spindle. The rapid degradation of Cut2 at anaphase requires its amino-terminal region and the activity of Cut9 (ref. 14), a component of the 20S cyclosome/ anaphase-promoting complex (APC), which is necessary for cyclin destruction3,4,11. Expression of non-degradable Cut2 blocks sister-chromatid separation but not cell-cycle progression. This defect can be overcome by grafting the N terminus of cyclin B onto the truncated Cut2, demonstrating that the regulated proteolysis of Cut2 is essential for sister-chromatid separation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Glotzer, M., Murray, A. W. & Kirschner, M. W. Nature 349, 132–138 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Hershko, A., Ganoth, D., Pehrson, D., Palazzo, R. & Cohen, L. H. J. biol. Chem. 266, 16376–16379 (1991).

    CAS  PubMed  Google Scholar 

  3. Sudakin, V. et al. Molec. Biol. Cell 6, 185–197 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. King, R. W. et al. Cell 81, 279–288 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Surana, U. et al. EMBO J. 12, 1969–1978 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Holloway, S. L., Glotzer, M., King, R. W. & Murray, A. W. Cell 73, 1393–1402 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Rimmington, G., Dalby, B. & Glover, D. M. J. Cell Sci. 107, 2729–2738 (1994).

    CAS  PubMed  Google Scholar 

  8. Sigrist, S., Jacobs, H., Stratmann, R. & Lehner, C. F. EMBO J. 14, 4827–4838 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ghislain, M., Udvardy, A. & Mann, C. Nature 366, 358–362 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Gordon, C., McGurk, G., Dillon, P., Rosen, C. & Hastie, N. D. Nature 366, 355–357 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Irniger, S., Piatti, S., Michaelis, C. & Nasmyth, K. Cell 81, 269–277 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Hirano, T., Funahashi, S., Uemura, T. & Yanagida, M. EMBO J. 5, 2973–2979 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Uzawa, S., Samejima, I., Hirano, T., Tanaka, K. & Yanagida, M. Cell 62, 913–925 (1990).

    Article  CAS  PubMed  Google Scholar 

  14. Samejima, I. & Yanagida, M. J. Cell Biol. 127, 1655–1670 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Creanor, J. & Mitchison, J. M. J. Cell Sci. 96, 435–438 (1990).

    CAS  PubMed  Google Scholar 

  16. Funabiki, H., Hagan, I., Uzawa, S. & Yanagida, M. J. Cell Biol. 121, 961–976 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Hagan, I. & Yanagida, M. J. Cell Biol. 129, 1033–1047 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Moreno, S., Hayles, J. & Nurse, P. Cell 58, 361–372 (1989).

    Article  CAS  PubMed  Google Scholar 

  19. Amon, A., Irniger, S. & Nasmyth, K. Cell 77, 1037–1050 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Basi, G., Schmid, E. & Maundrell, K. Gene 123, 131–136 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Nurse, P., Thuriaux, P. & Nasmyth, K. Molec. gen. Genet. 146, 167–178 (1976).

    Article  CAS  PubMed  Google Scholar 

  22. Nurse, P., & Bissett, Y. Nature 292, 558–560 (1981).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Murray, A. W., Solomon, M. J. & Kirschner, M. W. Nature 339, 280–286 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Hagan, I. M. & Hyams, J. S. J. Cell Sci. 89, 343–357 (1988).

    PubMed  Google Scholar 

  25. Tyers, M., Tokiwa, G., Nash, R. & Futcher, B. EMBO J. 11, 1773–1784 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Salama, S. R., Hendricks, K. B. & Thorner, J. Molec. Biol. Cell 14, 7953–7966 (1994).

    Article  CAS  Google Scholar 

  27. Mizukami, T. et al. Cell 73, 121–132 (1993).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Funabiki, H., Yamano, H., Kumada, K. et al. Cut2 proteolysis required for sister-chromatid separation in fission yeast. Nature 381, 438–441 (1996). https://doi.org/10.1038/381438a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/381438a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing