Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Oscillation and noise determine signal transduction in shark multimodal sensory cells

Abstract

OSCILLATING membrane potentials that generate rhythmic impulse patterns are considered to be of particular significance for neuronal information processing1–4. In contrast, noise is usually seen as a disturbance which limits the accuracy of information transfer5–8. We show here, however, that noise in combination with intrinsic oscillations can provide neurons with particular encoding properties, a discovery we made when recording from single electrosensory afferent of a fish. The temporal sequence of the impulse trains indicates oscillations that operate near the spike-triggering threshold. The oscillation frequency determines the basic rhythm of impulse generation, but whether or not an impulse is actually triggered essentially depends on superimposed noise. The probability of impulse generation can be altered considerably by minor modifications of oscillation baseline and amplitude, which may underlie the exquisite sensitivity of these receptors to thermal and electrical stimuli. Additionally, thermal, but not electrical, stimuli alter the oscillation frequency, allowing dual sensory messages to be conveyed in a single spike train. These findings demonstrate novel properties of sensory transduction which may be relevant for neuronal signalling in general.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Llinas, R. R. Science 242, 1654–1664 (1988).

    Article  ADS  CAS  Google Scholar 

  2. Aldenhoff, J. B. Pharmacopsychiatry 22, 227–240 (1989).

    Article  CAS  Google Scholar 

  3. Connors, W. B. & Gutnick, M. J. Trends neurol. Sci. 13, 99–104 (1990).

    Article  CAS  Google Scholar 

  4. McGormick, D. A & Feeser, H. R. Neuroscience 39, 103–113 (1990).

    Article  Google Scholar 

  5. Bullock, T. H. J. gen. Physlol. 55, 565–584 (1970).

    Article  CAS  Google Scholar 

  6. Fitzhugh, R. J. gen. Physiol. 40, 675–692 (1958).

    Article  Google Scholar 

  7. Schreiner R. C., Essick, G. K. & Whitsel, B. L. J. Neurophysiol. 41, 338–349 (1978).

    Article  CAS  Google Scholar 

  8. Bialek, W. & Rieke, F. Trends neurol. Sci. 15, 428–435 (1992).

    Article  CAS  Google Scholar 

  9. Iggo, A. J. Physiol., Lond. 200, 391–407 (1969).

    Google Scholar 

  10. Dykes, R. W. Brain Res. 98, 485–500 (1975).

    Article  CAS  Google Scholar 

  11. Braun, H. A., Bade, H. & Hensel, H. Pflügers Arch. 386, 1–9 (1980).

    Article  CAS  Google Scholar 

  12. Braun, H. A., Schäfer, K. & Wissing, H. in Thermoreception and Temperature Regulation (eds Bligh, J. & Voigt, K.) 19–29 (Springer, Berlin, 1990).

    Book  Google Scholar 

  13. Schäfer, K., Braun, H. A. & Rempe, L. Experientia 47, 47–50 (1990).

    Article  Google Scholar 

  14. Longtin, A., Bulsara, A. & Moss, F. Phys. Rev. Lett. 67, 656–659 (1991).

    Article  ADS  CAS  Google Scholar 

  15. Maddox, J. Nature 325, 469 (1991).

    Article  ADS  Google Scholar 

  16. Brink, F., Bronk, D. W. & Larrabee, M. G. Ann. N.Y. Acad. Sci. 47, 457–485 (1946).

    Article  ADS  CAS  Google Scholar 

  17. Buller, A. J., Nicholls, J. G. & Ström, G. J. Physiol., Lond. 122, 409–418 (1953).

    Article  CAS  Google Scholar 

  18. Braun, H. A., Schäfer, K., Wissing, H. & Hensel, H. in Sensory Receptor Mechanisms (eds Hamann, W. & Iggo, A.) 147–156 (World Science, Singapore, 1984).

    Google Scholar 

  19. Schäfer, K. & Braun, H. A. Pflügers Arch. 417, 91–99 (1991).

    Article  Google Scholar 

  20. Sokabe, M. et al. J. Neumphysiol. 70, 275–283 (1993).

    Article  CAS  Google Scholar 

  21. Knight, B. W. J. gen. Physiol. 59, 734–766 (1972).

    Article  CAS  Google Scholar 

  22. Longtin, A. J. stat. Phys. 70, 309–327 (1993).

    Article  ADS  Google Scholar 

  23. Douglass, J.K., Wilkens, L., Pantazelou, E. & Moss, F. Nature 365, 337–340 (1993).

    Article  ADS  CAS  Google Scholar 

  24. Fohlmeister, J., Poppele, R. E. & Purple, R. L. J. Neurophysiol. 37, 1213–1227 (1974).

    Article  CAS  Google Scholar 

  25. Waltman, B. Acta physiol. scand. 66, Suppl. 264, 1–60 (1966).

    Article  Google Scholar 

  26. Kalmijn, A.J. Nature 212, 1232–1233 (1966).

    Article  ADS  Google Scholar 

  27. Bromm, B., Hensel, H. J. & Nier, K. Experientia 31, 615–618 (1975).

    Article  CAS  Google Scholar 

  28. Akoev, G. N. & Andrianov, G. N. Adv. physiol. Sci. 31, 57–73 (1980).

    Google Scholar 

  29. Alonso, A. & Klink, R. J. Neurophysiol. 70, 128–143 (1993).

    Article  CAS  Google Scholar 

  30. Hensel, H. Z. vergl. Physiol. 37, 509–526 (1955).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braun, H., Wissing, H., Schäfer, K. et al. Oscillation and noise determine signal transduction in shark multimodal sensory cells. Nature 367, 270–273 (1994). https://doi.org/10.1038/367270a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/367270a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing