Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nitrogen transport by vertically migrating diatom mats in the North Pacific Ocean

Abstract

PHYTOPLANKTON production in the surface waters of stratified oceans is fed mainly by nitrogen that has been recycled within the euphotic zone1. The nitrogen that is lost from surface waters as organic matter exported to the deep ocean must be balanced by inputs of new nitrogen to the upper ocean2,3. Sediment trap studies2 have shown that the 15N/14N ratio (δ15N) of the exported organic matter is higher than that of the suspended particulates, and suggest that the rich nitrate pool below the euphotic zone is the source of 'new' nitrogen for the upper ocean. Yet steep vertical concentration gradients suggest that diffusive upward transport of nitrate is extremely limited, raising the question of how the nitrate reaches the surface waters. Here we present evidence that abundant diatom (Rhizosolenia) mats migrate vertically between surface waters and deep nitrate pools in the central North Pacific Ocean. Rising mats contain significantly larger internal nitrate pools than sinking mats. Mat δ15N is similar to that of the sub-nitricline nitrate, and consistently heavier than that of near-surface particulate organic matter. We conclude that Rhizosolenia mats may transport the equivalent of 50% of the new nitrogen requirements into the surface waters of the North Pacific gyre.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. McCarthy, J. J. & Carpenter, E. J. in Nitrogen in the Marine Environment (eds Carpenter, E. J. & Capone, D. G.) 487–572 (New York, 1983).

    Book  Google Scholar 

  2. Altabet, M. A. Deep-Sea Res. 35, 535–554 (1988).

    Article  ADS  CAS  Google Scholar 

  3. Jenkins, W. J. Nature 331, 521–523 (1988).

    Article  ADS  CAS  Google Scholar 

  4. Alldredge, A. L. & Silver, M. W. Mar. Biol. 66, 83–88 (1982).

    Article  Google Scholar 

  5. Carpenter, E. J. et al. Limnol. Oceanogr. 22, 739–741 (1977).

    Article  Google Scholar 

  6. Villareal, T. A. & Carpenter, E. J. Biol. Oceanogr. 6, 387–405 (1989).

    Google Scholar 

  7. Martinez, L., Silver, M. W., King, J. M. & Alldredge, A. L. Science 221, 152–154 (1983).

    Article  ADS  CAS  Google Scholar 

  8. Villareal, T. A. J. Plankton Res. 9, 965–941 (1987).

    Article  Google Scholar 

  9. Dortch, Q. J. Exp. Mar. Biol. Ecol. 61, 243–264 (1982).

    Article  CAS  Google Scholar 

  10. Dortch, Q., Clayton, J. R. Jr, Thoresen, S. S. & Ahmed, S. I. Mar. Biol. 81, 237–250 (1984).

    Article  CAS  Google Scholar 

  11. Hayward, T. L., Venrick, E. L. & McGowan, J. A. J. mar. Res. 41, 711–729 (1983).

    Article  Google Scholar 

  12. Liu, K. K. & Kaplan, I. R. Limnol. Oceanogr. 34, 829–839 (1989).

    Article  ADS  Google Scholar 

  13. Checkley, D. M. Jr, Deep-Sea Res. 36, 1449–1456 (1989).

    Article  ADS  CAS  Google Scholar 

  14. Eppley, R. W. & Peterson, B. J. Nature 282, 677–680 (1979).

    Article  ADS  Google Scholar 

  15. Minagawa, M. & Wada, E. Mar. Chem. 19, 245–249 (1986).

    Article  CAS  Google Scholar 

  16. Wada, E. & Hattori, A. Geomicobiol. J. 1, 85–101 (1978).

    Article  CAS  Google Scholar 

  17. Smayda, T. J. Oceanogr. mar. Biol. Rev. 8, 353–414 (1970).

    Google Scholar 

  18. Margalef, R. Oceanogr. Acta. 1, 493–509 (1978).

    Google Scholar 

  19. Cullen, J. J. in Migration: Mechanisims and Adaptive Significance (ed Rankin, M. A.) 135–152 (Marine Science Institute, Port Aransas, 1985).

    Google Scholar 

  20. Ballek, R. W. & Swift, E. J. Exp. Mar. Biol. Ecol. 101, 175–192 (1986).

    Article  Google Scholar 

  21. Rivkin, R. B., Swift, E., Biggley, W. H. & Voytek, M. A. Deep-Sea Res. 31, 353–367 (1984).

    Article  ADS  Google Scholar 

  22. Villareal, T. A. J. Plankton Res. 14, 459–463 (1992).

    Article  Google Scholar 

  23. Jenkinson, I. R. Ophelia 26, 233–253 (1986).

    Article  Google Scholar 

  24. Karsten, G. Wiss. Ergebn. Deut. Tiefsee-Exped. “Valdiva” 1898–1899 2, 137–219 (1905).

    Google Scholar 

  25. Karsten, G. Wiss. Ergebn. Deut. Tiefsee-Exped. “Valdiva” 1898–1899 2, 221–548 (1907).

    Google Scholar 

  26. Ganf, G. G. & Oliver, R. L. J. Ecol. 70, 829–844 (1982).

    Article  Google Scholar 

  27. Longhurst, A. R. Limnol. Oceanogr. 36, 1507–1526 (1991).

    Article  ADS  CAS  Google Scholar 

  28. Lewis, M. R., Harrison, W. G., Oakley, N. S., Herbert, D. & Platt, T. Science 234, 870–873 (1986).

    Article  ADS  CAS  Google Scholar 

  29. Longhurst, A. G. & Harrison, W. G. Prog. Ocean. 22, 123 (1989).

    Article  Google Scholar 

  30. Banse, K. J. Plankton Res. 9, 1031–1036 (1987).

    Article  CAS  Google Scholar 

  31. Dugdale, R. C. & Goering J. J. Limnol. Oceanogr. 12, 196–206 (1967).

    Article  ADS  CAS  Google Scholar 

  32. Goldman, J. C. in Toward a Theory on Biological-Physical interactions in the World Ocean (ed Rothschild, B. J.) 273–296 (Kluwer, Netherlands, 1988).

    Book  Google Scholar 

  33. Carpenter, E. J. & Romans, K. Science 254, 1356–1358 (1992).

    Article  ADS  Google Scholar 

  34. Duce, R. A. et al. Glob. biogeochem. Cycles 5, 193–259 (1991).

    Article  ADS  CAS  Google Scholar 

  35. Marra, J. & Heinemann, K. R. Deep-Sea Res. 34, 1821–1829 (1987).

    Article  ADS  CAS  Google Scholar 

  36. Robison, B. H. Mar. Biol. 84, 119–123 (1984).

    Article  Google Scholar 

  37. Altabet, M. A. Limnol. Oceanogr. 34, 1185–1201 (1989).

    Article  ADS  CAS  Google Scholar 

  38. Bauerfeind, E. Ocean. Act. Pro Int Symp Equatorial Vertical Motion, 131–136 (1987).

  39. Sancetta, C., Villareal, T. A. & Falkowski, P. Limnol. Oceanogr. 37, 1452–1457 (1991).

    Article  ADS  Google Scholar 

  40. Waite, A. & Harrison, P. J. Mar. Ecol. Prog. Ser. 87, 113–122 (1992).

    Article  ADS  Google Scholar 

  41. Michaels, A. F. & Silver, M. W. Deep-Sea Res. 35, 473–490 (1988).

    Article  ADS  Google Scholar 

  42. Goldman, J. C. Hansell, D. A. & Dennett, M. R. Mar. Ecol. Prog. Ser. 88, 257–270 (1992).

    Article  ADS  CAS  Google Scholar 

  43. Goldman, J. C. Deep-Sea Res. 40, 159–168 (1993).

    Article  Google Scholar 

  44. Thoreson, S. S., Dortch, Q. & Ahmed, S. I. J. Plankton Res. 4, 695–704 (1982).

    Article  Google Scholar 

  45. Fry, B. Limnol, Oceanogr. 33, 1182–1190 (1988).

    Article  ADS  CAS  Google Scholar 

  46. Wada, E., Terazaki, M., Kabaya, Y. & Nemoto, T. Deep-Sea Res. 34, 829–841 (1987).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Villareal, T., Altabet, M. & Culver-Rymsza, K. Nitrogen transport by vertically migrating diatom mats in the North Pacific Ocean. Nature 363, 709–712 (1993). https://doi.org/10.1038/363709a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/363709a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing