Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Simulation of the pre-melting behaviour of MgSiO3 perovskite at high pressures and temperatures

Abstract

MAGNESIUM-rich silicate perovskite is thought to be the dominant mineral phase in the Earth's lower mantle. The behaviour of MgSiO3 perovskite at high temperatures and pressures is therefore important for a wide range of geophysical problems, including the chemical and thermal evolution of the Earth, mantle convection, the thermal gradient in the mantle and the secular variations of the Earth's magnetic field. Experimental investigations at lower-mantle conditions are, however, difficult. We have performed computer simulations of MgSiO3 perovskite under typical lower-mantle pressures and temperatures using the constant-temperature and constant-pressure molecular dynamics (MD) method. At pressures above 10 GPa, our simulations suggest that orthorhombic MgSiO3 perovskite undergoes a temperature-induced phase transformation to a cubic (or pseudo-cubic) phase before melting, and that the cubic phase is a solid electrolyte. The MD method tends to overestimate the temperature of melting and related phenomena, but should provide a reliable qualitative description of the ionic-conductivity behaviour. Quantitative determination of the structure and ionic conductivity of MgSiO3 perovskite at lower-mantle conditions must, however, await improvements in both experimental and simulation techniques.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Li, X. & Jeanloz, R. Geophys. Res. Lett. 14, 1075–1078 (1887).

    Article  ADS  Google Scholar 

  2. Li, X. & Jeanloz, R. J. geophys. Res. 95, 5067–5078 (1990).

    Article  ADS  Google Scholar 

  3. Poirier, J. P. & Peyronneau, J. Nature 342, 537–539 (1989).

    Article  ADS  Google Scholar 

  4. Wood, B. J. & Nell, J. Nature 351, 309–311 (1991).

    Article  ADS  CAS  Google Scholar 

  5. Kapusta, B. & Guillope, M. Phil. Mag. 58, 809–816 (1988).

    Article  CAS  Google Scholar 

  6. Wall, A. & Price, G. D. Phys. Earth planet. Inter. 58, 192–204 (1989).

    Article  ADS  CAS  Google Scholar 

  7. Nose, S. J. Chem. Phys. 81, 511–519 (1984).

    Article  ADS  CAS  Google Scholar 

  8. Parrinello, M. & Rahman, A. J. appl. Phys. 52, 7182–7190 (1981).

    Article  ADS  CAS  Google Scholar 

  9. Matsui, M. J. chem. Phys. 91, 489–494 (1989).

    Article  ADS  CAS  Google Scholar 

  10. Matsui, M. Phys. Chem. Miner. 16, 234–238 (1988).

    Article  ADS  CAS  Google Scholar 

  11. Gillan, M. J. & Dixon, M. J. Phys. C13, 1901–1917 (1980).

    ADS  MathSciNet  CAS  Google Scholar 

  12. Stixrude, L. & Bukowinski, M. S. T. J. geophys. Res. 95, 19311–19325 (1990).

    Article  ADS  Google Scholar 

  13. Wolf, G. H. & Bukowinski, M. S. T. in High Pressure Research in Mineral Physics (eds Manghnani, M. H. & Syono, Y.) 313–331(Terra Scientific, Tokyo/Am. Geophys. Un., Washington DC, 1987).

    Google Scholar 

  14. Chao, E. C. T., Evans, H. T., Skinner, B. J. & Milton, C. Am. Miner. 46, 379–393 (1961).

    CAS  Google Scholar 

  15. Nosé, S. & Klein, M. L. J. chem. Phys. 90, 5005–5010 (1989).

    Article  ADS  Google Scholar 

  16. Lewis, L. J. & Lépine, Y. Phys. Rev. B40, 3319–3322 (1989).

    Article  ADS  CAS  Google Scholar 

  17. O'Keeffe, M. & Bovin, J.-O. Science 206, 599–600, (1979).

    Article  ADS  CAS  Google Scholar 

  18. Poirier, J. P., Peyronneau, J., Gesland, J. Y. & Brebec, G. Phys. Earth planet. Inter. 32, 273–287 (1983).

    Article  ADS  CAS  Google Scholar 

  19. Heinz, D. L. & Jeanloz, R. J. geophys. Res. 92, 11437–11444 (1987).

    Article  ADS  CAS  Google Scholar 

  20. Ohtani, E. Phys. Earth planet Inter. 33, 12–25 (1983).

    Article  ADS  CAS  Google Scholar 

  21. Poirier, J. P. Phys. Earth planet. Inter. 54, 364–369 (1989).

    Article  ADS  CAS  Google Scholar 

  22. Catlow, C. R. A., Dixon, M. & Mackrodt, W. C. in Computer Simulation of Solids (eds Catlow, C. R. A. & Mackrodt, W. C.) 130–161 (Springer, Berlin, 1982).

    Book  Google Scholar 

  23. Wall, A. & Price, G. D. in Perovskites (eds Navrotsky, A. & Weidner, D. J.) 45–53 (Am. Geophys. Un., Washington DC, 1989).

    Google Scholar 

  24. Price, G. D., Wall, A. & Parker, S. C. Phil Trans. R. Soc. Lond. A328, 391–407 (1989).

    Article  ADS  CAS  Google Scholar 

  25. Saboungi, M.-L., Rahman, A., Halley, J. W. & Blander, M. J. chem. Phys. 88, 5818–5823 (1988).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsui, M., Price, G. Simulation of the pre-melting behaviour of MgSiO3 perovskite at high pressures and temperatures. Nature 351, 735–737 (1991). https://doi.org/10.1038/351735a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/351735a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing