Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Embryonic lethality in mice homozygous for a processing-deficient allele of Notch1

An Erratum to this article was published on 30 November 2000

Abstract

The Notch genes encode single-pass transmembrane receptors that transduce the extracellular signals responsible for cell fate determination during several steps of metazoan development. The mechanism by which extracellular signals affect gene transcription and ultimately cell fate decisions is beginning to emerge for the Notch signalling pathway. One paradigm is that ligand binding to Notch triggers a Presenilin1-dependent proteolytic release of the Notch intracellular domain from the membrane1, resulting in low amounts of Notch intracellular domain which form a nuclear complex with CBF1/Su(H)/Lag1 to activate transcription of downstream targets2. Not all observations clearly support this processing model, and the most rigorous test of it is to block processing in vivo and then determine the ability of unprocessed Notch to signal. Here we report that the phenotypes associated with a single point mutation at the intramembranous processing site of Notch1, Val1,744→Gly, resemble the null Notch1 phenotype3,4. Our results show that efficient intramembranous processing of Notch1 is indispensable for embryonic viability and proper early embryonic development in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Strategy for generating a processing-deficient Notch1 allele.
Figure 2: The targeted Notch1 allele containing the V1744G mutation is both transcribed and translated.
Figure 3: Overall morphological phenotypes of the following genotypes: a, N1Δ1/+; bN1Δ1/ N1Δ1 (Notch1 null); c, e, N1V→Glox/ N1V→Glox; d, N1V→Glox/+.
Figure 4: In situ hybridization analysis of E9.5 animals.
Figure 5: In situ hybridization of Delta1 (Dl1).

Similar content being viewed by others

References

  1. Chan, Y. M. & Jan, Y. N. Roles for proteolysis and trafficking in Notch maturation and signal transduction. Cell 94 , 423–426 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Jarriault, S. et al. Signalling downstream of activated mammalian Notch. Nature 377, 355–358 ( 1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Conlon, R. A., Reaume, A. G. & Rossant, J. Notch1 is required for the coordinate segmentation of somites. Development 121, 1533– 1545 (1995).

    CAS  PubMed  Google Scholar 

  4. Swiatek, P. J., Lindsell, C. E., Amo, F. F. d., Weinmaster, G. & Gridley, T. Notch1 is essential for postimplantation development in mice. Genes Dev. 8, 707– 719 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Kidd, S., Lieber, T. & Young, M. W. Ligand-induced cleavage and regulation of nuclear entry of Notch in Drosophila melanogaster embryos. Genes Dev. 12, 3728–3740 ( 1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schroeter, E. H., Kisslinger, J. A. & Kopan, R. Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature 393, 382–386 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. De Strooper, B. et al. A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain. Nature 398, 518–521 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Lecourtois, M. & Schweisguth, F. Indirect evidence for Delta -dependent intracellular processing of Notch in Drosophila embryos. Curr. Biol. 8, 771–774 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Struhl, G. & Adachi, A. Nuclear access and action of Notch in vivo. Cell 93, 649–660 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Donoviel, D. B. et al. Mice lacking both presenilin genes exhibit early embryonic patterning defects. Genes Dev. 13, 2801– 2810 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Herreman, A. et al. Presenilin 2 deficiency causes a mild pulmonary phenotype and no changes in amyloid precursor protein processing but enhances the embryonic lethal phenotype of presenilin 1 deficiency. Proc. Natl Acad. Sci. USA 96, 11872–11877 ( 1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li, X. & Greenwald, I. HOP-1, a Caenorhabditis elegans presenilin, appears to be functionally redundant with SEL-12 presenilin and to facilitate LIN-12 and GLP-1 signaling. Proc. Natl Acad. Sci. USA 94, 12204–12209 (1997).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Westlund, B., Parry, D., Clover, R., Basson, M. & Johnson, C. D. Reverse genetic analysis of Caenorhabditis elegans presenilins reveals redundant but unequal roles for sel-12 and hop-1 in Notch-pathway signaling. Proc. Natl Acad. Sci. USA 96, 2497–2502 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Artavanis-Tsakonas, S., Rand, M. D. & Lake, R. J. Notch signaling: cell fate control and signal integration in development. Science 284, 770– 776 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Ye, Y. H., Lukinova, N. & Fortini, M. E. Neurogenic phenotypes and altered Notch processing in Drosophila Presenilin mutants. Nature 398 , 525–529 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Berechid, B. E., Thinakaran, G., Wong, P. C., Sisodia, S. S. & Nye, J. S. Lack of requirement for Presenilin1 in Notch1 signaling. Curr. Biol. 9, 1493 –1496 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Kopan, R., Schroeter, E. H., Weintraub, H. & Nye, J. S. Signal transduction by activated mNotch: importance of proteolytic processing and its regulation by the extracellular domain. Proc. Natl Acad. Sci. USA 93, 1683–1688 ( 1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Krebs, L. T. et al. Notch signaling is essential for vascular morphogenesis in mice. Genes Dev. 14, 1343– 1352 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Neidhardt, L. M., Kispert, A. & Herrmann, B. G. A mouse gene of the paired-related homeobox class expressed in the caudal somite compartment and in the developing vertebral column, kidney and nervous system. Dev. Genes Evol. 207, 330–339 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Bettenhausen, B., de Angelis, M. H., Simon, D., Guenet, J. -L. & Gossler, A. Transient and restricted expression during mouse embryogenesis of Dll1, a murine gene closely related to Drosophila Delta. Development 121, 2407 –2418 (1995).

    CAS  PubMed  Google Scholar 

  21. de la Pompa, J. L. et al. Conservation of the Notch signalling pathway in mammalian neurogenesis. Development 124, 1139– 1148 (1997).

    CAS  PubMed  Google Scholar 

  22. Reaume, A. G., Conlon, R. A., Zirngibl, R., Yamaguchi, T. P. & Rossant, J. Expression analysis of a Notch homologue in the mouse embryo. Dev. Biol. 154, 377–387 (1992).

    Article  CAS  PubMed  Google Scholar 

  23. Schweisguth, F. Dominant-negative mutation in the β2 and β6 proteasome subunit genes affect alternative cell fate decisions in the Drosophila sense organ lineage. Proc. Natl Acad. Sci. USA 96, 11382 –11386 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Carmeliet, P. et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380, 435–439 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Lewandoski, M. & Martin, G. R. Cre-mediated chromosome loss in mice. Nature Genet. 17, 223–225 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Yuan, W. et al. The mouse SLIT family: Secreted ligands for ROBO expressed in patterns that suggest a role in morphogenesis and axon guidance. Dev. Biol. 212, 290–306 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Milner, L. A. et al. Inhibition of granulocytic differentiation by mNotch1. Proc. Natl Acad. Sci. USA 93, 13014– 13019 (1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Girard, L. et al. Frequent provirus insertional mutagenesis of Notch1 in thymomas of MMTVD/myc transgenic mice suggests a collaboration of c-myc and Notch1 for oncogenesis. Genes Dev. 10, 1930– 1944 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank T. Ley, E. Ross, D. Ornitz and S. Hua for technical help; R. Conlon and T. Gridley for providing animals and communicating results before publication; R. Aguilera, D. Henrique, B. Herrmann, G. Martin, J. Sanes, M. Thayer and S. Troyanovsky for reagents; R. Cagan and O. Pourquie for reading and commenting on the manuscript; and members of the Kopan lab—X. Tian, A. Nichols, M.-H. Lin, J. Kisslinger, B. Hadland and J. Books. This work was supported by the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphael Kopan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huppert, S., Le, A., Schroeter, E. et al. Embryonic lethality in mice homozygous for a processing-deficient allele of Notch1. Nature 405, 966–970 (2000). https://doi.org/10.1038/35016111

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35016111

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing