Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The role of the distal histidine in myoglobin and haemoglobin

Abstract

The distal E7 histidine in vertebrate myoglobins and haemoglobins has been strongly conserved during evolution and is thought to be important in fine-tuning the ligand affinities of these proteins1–8. A hydrogen bond between the Nɛ proton of the distal histidine and the second oxygen atom may stabilize O2 bound to the haem iron1–8. The proximity of the imidazole side chain to the sixth coordination position, which is required for efficient hydrogen bonding, has been postulated to inhibit sterically the binding of CO and alkyl isocyanides2–8. To test these ideas, engineered mutants of sperm whale myoglobin9 and the α- and β-subunits of human haemoglobin8,10–12 were prepared in which E7 histidine was replaced by glycine. Removal of the distal imidazole in myoglobin and the α-subunits of intact, R-state haemoglobin caused significant changes in the affinity for oxygen, carbon monoxide and methyl isocyanide; in contrast, the His-E7 to Gly substitution produced little or no effect on the rates and extents of O2, CO and methyl isocyanide binding to β-chains within R-state haemoglobin. In the β-subunit the distal histidine seems to be less significant in regulating the binding of ligands to the haem iron in the high affinity quaternary conformation. Structural differences in the oxygen binding pockets shown by X-ray crystallographic studies4,5 account for the functional differences of these proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Pauling, L. Nature 203, 182–183 (1964).

    Article  ADS  CAS  Google Scholar 

  2. Collman, J. P. Accts Chem. Res. 10, 265–273 (1977).

    Article  CAS  Google Scholar 

  3. Moffat, K., Deatherage, J. R. & Seyberg, D. W. Science 206, 1035–1042 (1979).

    Article  ADS  CAS  Google Scholar 

  4. Phillips, S. E. V. J. molec. Biol. 142, 531–554 (1980).

    Article  CAS  Google Scholar 

  5. Shaanan, B. J. molec. Biol. 171, 31–59 (1983).

    Article  CAS  Google Scholar 

  6. Mims, M. P., Porras, H. G., Olson, J. S., Noble, R. W. & Peterson, J. A. J. biol. Chem. 258, 14219–14232 (1983).

    CAS  PubMed  Google Scholar 

  7. Nagai, K. et al. Nature 329, 858–860 (1987).

    Article  ADS  CAS  Google Scholar 

  8. Perutz, M. F. in Molecular Basis of Blood Diseases (eds Stammatoyanopoulos, G., Nienhaus, A. W., Leder, P. & Majerus, P. W.) 127–178 (Saunders, Philadelphia, 1987).

    Google Scholar 

  9. Springer, B. A. & Sligar, S. G. Proc. natn. Acad. Sci. U.S.A. 84, 8961–8965 (1987).

    Article  ADS  CAS  Google Scholar 

  10. Nagai, K. & Thøgersen, H. C. Nature 309, 810–812 (1984).

    Article  ADS  CAS  Google Scholar 

  11. Nagai, K. & Thøgersen, H. C. Meth. Enzym. 153, 461–481 (1987).

    Article  CAS  Google Scholar 

  12. Nagai, K., Perutz, M. F. & Poyart, C. Proc. natn. Acad. Sci. U.S.A. 82, 7252–7255 (1985).

    Article  ADS  CAS  Google Scholar 

  13. Sawicki, C. A. & Gibson, Q. H. J. biol. Chem. 252, 7538–7547 (1977).

    CAS  PubMed  Google Scholar 

  14. Olson, J. S. Meth. Enzym. 76, 631–651 (1981).

    Article  CAS  Google Scholar 

  15. Olson, J. S., Anderson, M. E. & Gibson, Q. H. J. biol. Chem. 246, 5919–5923 (1971).

    CAS  PubMed  Google Scholar 

  16. Reisberg, P. I. & Olson, J. S. J. biol. Chem. 255, 4151–4158 (1980).

    CAS  PubMed  Google Scholar 

  17. Phillips, S. E. V. & Schoenborn, B. P. Nature 292, 81–82 (1981).

    Article  ADS  CAS  Google Scholar 

  18. Hanson, J. C. & Schoenborn, B. P. J. molec. Biol. 153, 117–146 (1981).

    Article  CAS  Google Scholar 

  19. Baldwin, J. J. molec. Biol. 136, 103–128 (1980).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olson, J., Mathews, A., Rohlfs, R. et al. The role of the distal histidine in myoglobin and haemoglobin. Nature 336, 265–266 (1988). https://doi.org/10.1038/336265a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/336265a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing