Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Free energy perturbation calculations on binding and catalysis after mutating Asn 155 in subtilisin

Abstract

Site-directed mutagenesis is a very powerful approach to altering the biological functions of proteins, the structural stability of proteins and the interactions of proteins with other molecules. Several experimental studies in recent years have been directed at estimating the changes in catalytic properties, (rates of binding and catalysis) in site-directed mutants of enzymes compared to the native enzymes1–3. Simulation approaches to the study of complex molecules have also become more powerful, in no small measure owing to the increase in computer power4,5. These simulations have often allowed results of experiments to be rationalized and understood mechanistically. A new approach called the free-energy pertubation method, which uses statistical mechanics and molecular dynamics can often be used for quantitative calculation of free energy differences6. We have applied such a technique to calculate the differential free energy of binding and free energy of activation for catalysis of a tripeptide substrate by native subtilisin and a subtilisin mutant (Asn 155 → Ala 155). Our studies lead to a calculated difference in free energy of binding which is relatively small, but a calculated change in free energy of catalysis which is substantial. These energies are very close to those determined experimentally (J. A. Wells and D. A. Estell, personal communication), which were not known to us until the simulations were completed. This demonstrates the predictive power and utility of theoretical simulation methods in studies of the effects of site-specific mutagenesis on both enzyme binding and catalysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. 1. Wells, T. N. C. & Fersht, A. R. Nature 316, 656–657 (1985). 2. Strauss, D., Raines, R., Kawashima, E., Knowles, J. R. & Gilbert, W. Proc. natn. Acad. Sci. U.S.A. 82, 2272–2276 (1985). 3. Craik, C. S. et al. Science 228, 291–297 (1985). 4. Kollman, P. A. Ace. Chem. Res. 18, 105–111 (1985). 5. Bash, P. A., Singh, U. C., Langridge, R. & Kollman, P. A. Science 236, 564–568 (1987). 6. Singh, U. C., Brown, F. K., Bash, P. A. & Kollman, P. A. /. Am. Chem. Soc. 109,1607–1614 (1987). 7. Robertus, J. D., Kraut, J., Alden, R. A. & Birktoft, J. J. Biochemistry 11,4293–4303 (1972). 8. Poulos, T. L., Alden, R. A., Freer, S. T., Birktoft, J. J. & Kraut, J. /. biol. Chem. 250, 1097–1103 (1976). 9. Wells, J. A., Cunningham, B. C., Graycar, T. P. & Estell, D. A. Phil. Trans. R. Soc. A317, 415–423 (1986). 10. Estell, D. A. et al. Science 233, 659–663 (1986). 11. Estell, D. A., Graycar, T. P. & Wells, J. A. J. biol. Chem. 260, 6518–6521 (1985). 12. Wells, J. A. & Powers, D. B. /. biol. Chem. 261, 6564–6570 (1986). 13. Power, S. D., Adams, R. M. & Wells, J. A. Proc. natn. Acad. Sci. U.S.A. 83,3096–4000 (1986). 14. Robertas, J. D. et al. Biochemistry 11, 2439–2449 (1972). 15. Katz, B. A. & Kossiakoff, A. J. biol. Chem. 261, 15480–15485 (1986). 16. Matthews, B. W., Sigler, P. B., Henderson, R. & Blow, D. M. Nature 214, 652–656 (1967). 17. Stroud, R. M., Kay, L. M. & Dickerson, R. E. J. molec. Biol. 83, 185–208 (1974). 18. Shotton, D. M. & Watson, H. C. Nature 225, 811–816 (1970). 19. Singh, U. C., Weiner, P. K., Caldwell, J. W. & Kollman, P. A. AMBER(UCSF) Version 3.0 (Dep. Pharmac. Chem., Univ. California, San Francisco, 1986). 20. Tembe, B. L. & McCammon, J. A. /. comput. Chem. 8, 281–284 (1984). 21. Weiner, S. J., Singh, U. C. & Kollman, P. A. /. Am. chem. Soc. 107, 2219–2229 (1985). 22. Hammond, G. S. J. Am. chem. Soc. 77, 334–338 (1955). 23. Kossiakoff, A. A. & Spencer, S. A. Nature 288, 414–416 (1980). 24. Weiner, S. J. et al. J. Am. chem. Soc. 106, 765–784 (1983). 25. Warshel, A. & Sussman, F. Proc. natn. Acad. Sci. U.S.A. 83, 3806–3810 (1986). 26. Lybrand, T., McCammon, J. A. & Wipff, G. W. Proc. natn. Acad. Sci. U.S.A. 83, 833–836 (1986). 27. Wong, C. F. & McCammon, J. A. /. Am. chem. Soc. 108, 3830–3832 (1986). 28. Bash, P., Singh, U. C., Brown, F., Langridge, R. & Kollman, P. Science 235,574–576 (1987). 29. Chandrasekhar, J., Spellmeyer, D. & Jorgensen, W. L. /. Am. chem. Soc. 106,903–910 (1984). 30. Wipff, G. W., Weiner, P. K. & Kollman, P. A. J. Am. chem. Soc. 104, 3249–3258 (1982). 31. Warshel, A. Proc. natn. Acad. Sci. U.S.A. 75, 5250–5254 (1978). 32. Warshel, A. Biochemistry 20, 3167–3177 (1981). 33. Weiner, S. J., Seibel, G. L. & Kollman, P. A. Proc. natn. Acad. Sci. U.S.A. 83,649–653 (1986). 34. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein M. L. /. chem. Phys. 79, 926–935 (1983). 35. Bash, P. A. thesis, Univ. California, Berkeley (1986). 36. Hwang, J-K. & Warshel, A. Biochemistry 26, 2669–2673 (1987).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rao, S., Singh, U., Bash, P. et al. Free energy perturbation calculations on binding and catalysis after mutating Asn 155 in subtilisin. Nature 328, 551–554 (1987). https://doi.org/10.1038/328551a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/328551a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing