Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Asymmetry in the evolution of female mating preferences

Abstract

Trivers1 has suggested that where genetic or developmental constraints on the expression of a trait prevent male and female fitnesses from being maximized simultaneously, female mating preferences should evolve to favour males who exhibit variants of the trait that confer relatively low fitness on males but relatively high fitness on females. This asymmetry is expected because alleles that affect mating preferences are expressed only in females, but are genetically correlated with alleles that differentially affect the fitnesses of the two sexes. Here we describe a two-locus population–genetic model that embodies this idea. The model's qualitative behaviour is exactly like that of previous models2–10 for the joint evolution of male traits and female mating preferences: evolution is equally likely to proceed in either direction along (or away from) a line of neutral equilibria that relates given frequencies of the preference alleles to corresponding frequencies of the trait alleles. But there is a quantitative asymmetry, of the expected kind, in the shape of the line of equilibria. When we extend the model to include migration between partially isolated demes (breeding groups), ‘selective diffusion’11,12 moves the demes along the line of equilibria in the direction that increases average female fitness while lowering average male fitness.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Trivers, R. Social Evolution (Benjamin/Cummings, Menlo Park, 1985).

    Google Scholar 

  2. Fisher, R. A. The Genetical Theory of Natural Selection (Clarendon, Oxford, 1930).

    Book  Google Scholar 

  3. O'Donald, P. Genetic Models of Sexual Selection (Cambridge University Press, 1980).

    MATH  Google Scholar 

  4. Lande, R. Proc. natn. Acad. Sci. U.S.A. 78, 3721–3725 (1981).

    Article  ADS  CAS  Google Scholar 

  5. Lande, R. Evolution 36, 213–223 (1982).

    Article  Google Scholar 

  6. Kirkpatrick, M. Evolution 36, 1–12 (1982).

    Article  Google Scholar 

  7. Kirkpatrick, M. Am. Nat. 125, 788–810 (1985).

    Article  Google Scholar 

  8. Seger, J. Evolution 39, 1185–1193 (1985).

    Article  Google Scholar 

  9. Engen, S. & Saether, B.-E. J. theor. Biol. 117, 277–289 (1985).

    Article  CAS  Google Scholar 

  10. Lande, R. & Arnold, S. J. J. theor. Biol. 117, 651–664 (1985).

    Article  CAS  Google Scholar 

  11. Wright, S. Ecology 26, 415–419 (1945).

    Article  Google Scholar 

  12. Wright, S. Evolution and the Genetics of Populations Vol. 3 (University of Chicago Press, 1977).

    Google Scholar 

  13. Janetos, A. C. Behav. Ecol. Sociobiol. 7, 107–112 (1980).

    Article  Google Scholar 

  14. Parker, G. A. in Mate Choice (ed. Bateson, P.) 141–166 (Cambridge University Press, 1983).

    Google Scholar 

  15. Owen, A. R. G. Heredity 7, 97–102 (1953).

    Article  Google Scholar 

  16. Haldane, J. B. S. Nature 193, 1108 (1962).

    Article  ADS  CAS  Google Scholar 

  17. Li, C. C. Evolution 17, 493–496 (1963).

    Article  Google Scholar 

  18. Bodmer, W. F. Genetics 51, 411–424 (1965).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kidwell, J. F. et al. Genetics 85, 171–183 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Wade, M. J. Q. Rev. Biol. 53, 101–114 (1978).

    Article  Google Scholar 

  21. Uyenoyama, M. & Feldman, M. W. Theor. Popul. Biol. 17, 380–414 (1980).

    Article  CAS  Google Scholar 

  22. Wilson, D. S. A. Rev. Ecol. Syst. 14, 159–187 (1983).

    Article  Google Scholar 

  23. Wilson, D. S. & Colwell, R. K. Evolution 35, 882–897 (1981).

    Article  Google Scholar 

  24. Mayr, E. in Sexual Selection and the Descent of Man 1871–1971 (ed. Campbell, B.) 87–104 (Aldine, Chicago, 1972).

    Google Scholar 

  25. Zahavi, A. J. theor. Biol. 53, 205–214 (1975).

    Article  CAS  Google Scholar 

  26. Trivers, R. L. Evolution 30, 253–269 (1976).

    Article  Google Scholar 

  27. Bell, G. Evolution 32, 872–885 (1978).

    Article  Google Scholar 

  28. Eshel, I. J. theor. Biol. 70, 245–250 (1978).

    Article  CAS  Google Scholar 

  29. Borgia, G. in Sexual Selection and Reproductive Competition in Insects (eds Blum, M. S. & Blum, N. A.) 19–80 (Academic, New York, 1979).

    Google Scholar 

  30. Andersson, M. Biol J. Linn. Soc. 17, 375–393 (1982).

    Article  Google Scholar 

  31. Hamilton, W. D. & Zuk, M. Science 218, 384–387 (1982).

    Article  ADS  CAS  Google Scholar 

  32. Dominey, W. J. J. theor. Biol. 101, 495–502 (1983).

    Article  CAS  Google Scholar 

  33. Thornhill, R. & Alcock, J. The Evolution of Insect Mating Systems (Harvard University Press, Cambridge, 1983).

    Book  Google Scholar 

  34. Heisler, I. L. Evolution 38, 1283–1295 (1984).

    Article  Google Scholar 

  35. Williams, G. C. Evolution 11, 398–411 (1957).

    Article  Google Scholar 

  36. Comfort, A. The Biology of Senescence 3rd edn(Elsevier, New York, 1979).

    Google Scholar 

  37. Rose, M. R. Am. Zool. 23, 15–23 (1983).

    Article  Google Scholar 

  38. Andrews, R. M. Copeia 1976, 477–482 (1976).

    Article  Google Scholar 

  39. Stamps, J. A. in Lizard Ecology (eds Huey, R. B., Pianka, E. R. & Schoener, T. W) 169–204 (Harvard University Press, Cambridge, 1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seger, J., Trivers, R. Asymmetry in the evolution of female mating preferences. Nature 319, 771–773 (1986). https://doi.org/10.1038/319771a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/319771a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing