Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Graft-Versus-Leukaemia

Enhanced antileukemic activity of allogeneic peripheral blood progenitor cell transplants following donor treatment with the combination of granulocyte colony-stimulating factor (G-CSF) and stem cell factor (SCF) in a murine transplantation model

Summary:

Allogeneic peripheral blood progenitor cells (PBPCs) have mostly been mobilized by granulocyte colony-stimulating factor (G-CSF). There is neither clinical nor experimental data available addressing the question if other hematopoietic growth factors or combinations thereof might influence engraftment, graft-versus-host disease (GvHD), and graft-versus-leukemia (GvL) effects after allogeneic peripheral blood progenitor cell transplantation (PBPCT). We used a murine model to investigate these parameters after transplantation of PBPCs mobilized with G-CSF and SCF either alone or in combination. Treatment of splenectomized DBA and Balb/c mice with 250 μg/kg/day G-CSF for 5 days resulted in an increase of CFU-gm from 0 to 53/μl. The highest progenitor cell numbers (147/μl) were observed after treatment with 100 μg/kg/day SCF administered in conjunction with G-SCF. No differences were detected with regard to the number of T cells (CD3+), T cell subsets (CD4+, CD8+), B cells (CD19+) and NK cells (NK1.1+) in PBPC grafts mobilized by G-CSF plus SCF compared to those mobilized with G-CSF alone. The antileukemic activity of syngeneic and MHC-identical allogeneic PBPC grafts was investigated in lethally irradiated Balb/c mice bearing the B-lymphatic leukemia cell line A20. In this model, PBPCs mobilized by G-CSF plus SCF exerted a significantly higher antileukemic activity compared to grafts mobilized by G-CSF alone (94 vs 71% freedom from leukemia at day 100, P<0.05). The antileukemic effect was lowest after BMT (38% freedom from leukemia). Since significant differences in the incidence of lethal GvHD were not observed, improved GVL-activity resulted in superior overall survival. Our data demonstrate that the utilization of specific hematopoietic growth factors not only improve the yield of hematopoietic progenitor cells but can also significantly enhance the immunotherapeutic potential of allografts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Schmitz N, Dreger P, Suttorp M et al. Primary transplantation of allogeneic peripheral blood progenitor cells mobilized by filgrastim (granulocyte colony-stimulating factor). Blood 1995; 85: 1666–1672.

    CAS  PubMed  Google Scholar 

  2. Dreger P, Glass B, Uharek L et al. Allogenic transplantation of mobilized peripheral blood progenitor cells: towards tailored cell therapy. Int J Hematol 1997; 66: 1–11.

    Article  CAS  PubMed  Google Scholar 

  3. Glass B, Uharek L, Zeis M et al. Allogeneic peripheral blood progenitor cell transplantation in a murine model: evidence for an improved graft-versus-leukemia effect. Blood 1997; 90: 1694–1700.

    CAS  PubMed  Google Scholar 

  4. Storek J, Gooley T, Siadak M et al. Allogeneic peripheral blood stem cell transplantation may be associated with a high risk of chronic graft-versus-host disease. Blood 1997; 90: 4705–4709.

    CAS  PubMed  Google Scholar 

  5. Fischmeister G, Gadner H . Granulocyte colony-stimulating factor versus granulocyte-macrophage colony-stimulating factor for collection of peripheral blood progenitor cells from healthy donors. Cur Opin Hematol 2000; 7: 150–155.

    Article  CAS  Google Scholar 

  6. Geissler K, Peschel C, Niederwieser D et al. Potentiation of granulocyte colony-stimulating factor-induced mobilization of circulating progenitor cells by seven-day pretreatment with interleukin-3. Blood 1996; 87: 2732–2739.

    CAS  PubMed  Google Scholar 

  7. Bodine DM, Seidel NE, Zsebo KM, Orlic D . In vivo administration of stem cell factor to mice increases the absolute number of pluripotent hematopoietic stem cells. Blood 1993; 82: 445–455.

    CAS  PubMed  Google Scholar 

  8. Molineux G, McCrea C, Yan XQ et al. Flt-3 ligand synergizes with granulocyte colony-stimulating factor to increase neutrophil numbers and to mobilize peripheral blood stem cells with long-term repopulating potential. Blood 1997; 89: 3998–4004.

    CAS  PubMed  Google Scholar 

  9. Mauch P, Lamont C, Neben TY et al. Hematopoietic stem cells in the blood after stem cell factor and interleukin-11 administration: evidence for different mechanisms of mobili-zation. Blood 1995; 86: 4674–4680.

    CAS  PubMed  Google Scholar 

  10. Suzuki H, Ikebuchi K, Wada Y et al. An increase in peripheral blood progenitor cells in primates by coadministration of recombinant human interleukin 6 and recombinant human granulocyte colony-stimulating factor. Transplantation 1997; 64: 1468–1473.

    Article  CAS  PubMed  Google Scholar 

  11. Grzegorzewski KJ, Komschlies KL, Franco JL et al. Quantitative and cell-cycle differences in progenitor cells mobilized by recombinant human interleukin-7 and recombinant human granulocyte colony-stimulating factor. Blood 1996; 88: 4139–4148.

    CAS  PubMed  Google Scholar 

  12. Jackson JD, Yan Y, Brunda MJ et al. Interleukin-12 enhances peripheral hematopoiesis in vivo. Blood 1995; 85: 2371–2376.

    CAS  PubMed  Google Scholar 

  13. Funakoshi S, Taub DD, Anver MR et al. Immunologic and hematopoietic effects of CD40 stimulation after syngeneic bone marrow transplantation in mice. J Clin Invest 1997; 99: 484–491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Champlin R, Giralt S, Gajewski J . T cells, graft-versus-host disease and graft-versus-leukemia: innovative approaches for blood and marrow transplantation. Acta Haematol 1996; 95: 157–163.

    Article  CAS  PubMed  Google Scholar 

  15. Bensinger WI, Martin PJ, Storer B et al. Transplantation of bone marrow as compared with peripheral-blood cells from HLA-identical relatives in patients with hematologic cancers. N Engl J Med 2001; 344: 175–181.

    Article  CAS  PubMed  Google Scholar 

  16. Rondelli D, Raspadori D, Anasetti C et al. Alloantigen presenting capacity, T cell alloreactivity and NK function of G-CSF-mobilized peripheral blood cells. Bone Marrow Transplant 1998; 22: 631–637.

    Article  CAS  PubMed  Google Scholar 

  17. Sloand EM, Kim S, Maciejewski JP et al. Pharmacologic doses of granulocyte colony-stimulating factor affect cytokine production by lymphocytes in vitro and in vivo. Blood 2000; 95: 2269–2274.

    CAS  PubMed  Google Scholar 

  18. Pulendran B, Banchereau J, Burkeholder S et al. Flt3-ligand and granulocyte colony-stimulating factor mobilize distinct human dendritic cell subsets in vivo. J Immunol 2000; 165: 566–572.

    Article  CAS  PubMed  Google Scholar 

  19. Arpinati M, Green CL, Heimfeld S et al. Granulocyte-colony stimulating factor mobilizes T helper 2-inducing dendritic cells. Blood 2000; 95: 2484–2490.

    CAS  PubMed  Google Scholar 

  20. Mielcarek M, Martin PJ, Torok-Storb B . Suppression of alloantigen-induced T-cell proliferation by CD14+ cells derived from granulocyte colony-stimulating factor-mobilized peripheral blood mononuclear cells. Blood 1997; 89: 1629–1634.

    CAS  PubMed  Google Scholar 

  21. Uharek L, Glass B, Zeis M et al. Abrogation of graft-vs-leukemia activity after depletion of CD3+ T cells in a murine model of MHC-matched peripheral blood progenitor cell transplantation (PBPCT). Exp Hematol 1998; 26: 93–99.

    CAS  PubMed  Google Scholar 

  22. Kim KJ, Kannellopoulus-Langevin C, Mervin RM et al. Establishment and characterization of Balb/c lymphoma lines with B cell properties. J Immunol 1979; 122: 549–554.

    CAS  PubMed  Google Scholar 

  23. Molineux G, Pojda Z, Hampson In et al. Transplantation potential of peripheral blood stem cells induced by granulocyte colony-stimulating factor. Blood 1990; 76: 2153–2158.

    CAS  PubMed  Google Scholar 

  24. Bodine DM, Seidel NE, Orlic D . Bone marrow collected 14 days after in vivo administration of granulocyte colony-stimulating factor and stem cell factor to mice has 10-fold more repopulating ability than untreated bone marrow. Blood 1996; 88: 89–97.

    CAS  PubMed  Google Scholar 

  25. Leary AG, Zeng HQ, Clark SC, Ogawa M . Growth factor requirements for survival in G0 and entry into the cell cycle of primitive human hemopoietic progenitors. Proc Natl Acad Sci U S A 1992; 89: 4013–4017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. deRevel T, Appelbaum FR, Storb R et al. Effects of granulocyte colony-stimulating factor and stem cell factor, alone and in combination, on the mobilization of peripheral blood cells that engraft lethally irradiated dogs. Blood 1994; 83: 3795–3799.

    CAS  Google Scholar 

  27. Yan XQ, Hartley C, McElroy P et al. Peripheral blood progenitor cells mobilized by recombinant human granulocyte colony-stimulating factor plus recombinant rat stem cell factor contain long-term engrafting cells capable of cellular prolifer-ation for more than two years as shown by serial transplant-ation in mice. Blood 1995; 85: 2303–2307.

    CAS  PubMed  Google Scholar 

  28. Uharek L, Gassmann W, Glass B et al. Influence of cell dose and graft-versus-host reactivity on rejection rates after allogeneic bone marrow transplantation. Blood 1992; 79: 1612–1621.

    CAS  PubMed  Google Scholar 

  29. Begley CG, Basser R, Mansfield R et al. Enhanced levels and enhanced clonogenic capacity of blood progenitor cells following administration of stem cell factor plus granulocyte colony-stimulating factor to humans. Blood 1997; 90: 3378–3389.

    CAS  PubMed  Google Scholar 

  30. Stiff P, Gingrich R, Luger S et al. A randomized phase 2 study of PBPC mobilization by stem cell factor and filgrastim in heavily pretreated patients with Hodgkin's disease or non-Hodgkin's lymphoma. Bone Marrow Transplant 2000; 26: 471–481.

    Article  CAS  PubMed  Google Scholar 

  31. Briddell RA, Hartley CA, Smith KA, McNiece IK . Recombinant rat stem cell factor synergizes with recombinant human granulocyte colony-stimulating factor in vivo in mice to mobilize peripheral blood progenitor cells that have enhanced repopulating potential. Blood 1993; 82: 1720–1723.

    CAS  PubMed  Google Scholar 

  32. Körbling M, Przepiorka D, Huh YO et al. Allogeneic blood stem cell transplantation for refractory leukemia and lymphoma: potential advantage of blood over marrow allografts. Blood 1995; 85: 1659–1665.

    PubMed  Google Scholar 

  33. Körbling M, Huh YO, Durett A et al. Allogeneic blood stem cell transplantation: Peripheralization and yield of donor-derived primitive hematopoietic progenitor cells (CD34+ Thy-1dim) and lymphoid subsets, and possible predictors of engraftment and graft-versus-host disease. Blood 1995; 86: 2842–2848.

    PubMed  Google Scholar 

  34. Pan L, Delmonte Jr J, Jalonen CK, Ferrara JL . Pretreatment of donor mice with granulocyte colony-stimulating factor polarizes donor T lymphocytes toward type-2 cytokine production and reduces severity of experimental graft-versus-host disease. Blood 1995; 86: 4422–4429.

    CAS  PubMed  Google Scholar 

  35. Zeng D, Dejbakhsh JS, Strober S . Granulocyte colony-stimulating factor reduces the capacity of blood mononuclear cells to induce graft-versus-host disease: Impact on blood progenitor cell transplantation. Blood 1997; 90: 453–463.

    CAS  PubMed  Google Scholar 

  36. Uharek L, Zeis M, Hartung G et al. Induction of a T helper 2 (Th2) response in CD4+ donor cells leads to enhanced graft-versus-leukemia (GvL) activity and inhibits graft-versus-host disease (GvHD) after allogeneic stem cell transplantation. Blood 1997; 90(Suppl. 1): 204 (abstr).

  37. Bluman EM, Schnier GS, Avalos BR et al. The c-kit ligand potentiates the allogeneic mixed lymphocyte reaction. Blood 1996; 88: 3887–3893.

    CAS  PubMed  Google Scholar 

  38. Rodewald HR, Kretzschmar K, Swat W, Takeda S . Intra-thymically expressed c-kit ligand (stem cell factor) is a major factor driving expansion of very immature thymocytes in vivo. Immunity 1995; 3: 313–319.

    Article  CAS  PubMed  Google Scholar 

  39. Zeis M, Uharek L, Glass B et al. Allogeneic MHC-mismatched activated natural killer cells administered after bone marrow transplantation provide a strong graft-versus-leukemia effect in mice. Br J Haematol 1997; 96: 757–761.

    Article  CAS  PubMed  Google Scholar 

  40. Matos ME, Schnier GS, Beecher MS et al. Expression of a functional c-kit receptor on a subset of natural killer cells. J Exp Med 1993; 178: 1079–1084.

    Article  CAS  PubMed  Google Scholar 

  41. Shibuya A, Nagayoshi K, Nakamura K, Nakauchi H . Lymphokine requirement for the generation of natural killer cells from CD34+ hematopoietic progenitor cells. Blood 1995; 85: 3538–3546.

    CAS  PubMed  Google Scholar 

  42. Miller JS, Prosper F, McCullar V . Natural killer (NK) cells are functionally abnormal and NK cell progenitors are diminished in granulocyte colony-stimulating factor-mobilized peripheral blood progenitor cell collections. Blood 1997; 90: 3098–3105.

    CAS  PubMed  Google Scholar 

  43. Tsai M, Shih LS, Newlands GF et al. The rat c-kit ligand, stem cell factor, induces the development of connective tissue-type and mucosal mast cells in vivo. Analysis by anatomical distribution, histochemistry, and protease phenotype. J Exp Med 1991; 174: 125–131.

    Article  CAS  PubMed  Google Scholar 

  44. Shelburne CP, Ryan JJ . The role of Th2 cytokines in mast cell homeostasis. Immunol Rev 2001; 179: 82–93.

    Article  CAS  PubMed  Google Scholar 

  45. Gagari E, Tsai M, Lantz CS et al. Differential release of mast cell interleukin-6 via c-kit. Blood 1997; 89: 2654–2663.

    CAS  PubMed  Google Scholar 

  46. Volpi I, Perruccio K, Tosti A et al. Postgrafting administration of granulocyte colony-stimulating factor impairs functional immune recovery in recipients of human leukocyte antigen haplotype-mismatched hematopoietic transplants. Blood 2001; 97: 2514–2521.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartung, G., Zeis, M., Glass, B. et al. Enhanced antileukemic activity of allogeneic peripheral blood progenitor cell transplants following donor treatment with the combination of granulocyte colony-stimulating factor (G-CSF) and stem cell factor (SCF) in a murine transplantation model. Bone Marrow Transplant 32, 49–56 (2003). https://doi.org/10.1038/sj.bmt.1704072

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.bmt.1704072

Keywords

Search

Quick links