Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Mini Review
  • Published:

‘GVHD’: graft-versus-host disease or graft-versus-Hodgkin's disease? an old acronym with new meaning

Summary:

The majority of patients with relapsed or refractory Hodgkin's lymphoma (HL) will not be cured with standard therapy. Relapse rates remain high even after autologous stem cell transplantation (SCT), particularly for patients with high-risk disease. Allogeneic SCT offers several potential advantages for patients with HL. It is feasible when autologous stem cells are not available and stem cell grafts will be tumor free. Perhaps a more important advantage is the potential to generate a graft-versus-Hodgkin's lymphoma (GVHL) effect. Unfortunately, although allogeneic SCT may cure some HL patients, treatment-related mortality has been unusually high, and superior survival, when compared to autologous SCT, has not been demonstrated. Nonmyeloablative conditioning and allogeneic SCT may induce a direct GVHL reaction with less conditioning regimen-related toxicity and ultimately may have the potential to improve cure rates and survival for advanced HL patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mathe G, Amiel J, Schwarzenberg L et al. Adoptive immunotherapy of acute leukemia: experimental and clinical results. Cancer Res 1965; 25: 1525–1531.

    CAS  PubMed  Google Scholar 

  2. Barnes D, Corp M, Loutit J, Neal F . Treatment of murine leukaemia with X rays and homologous bone marrow. Preliminary communication. Br Med J 1956; 2: 626–630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sykes M, Romick M, Sachs D . Interleukin 2 prevents graft-versus-host disease while preserving the graft-versus-leukemia effect of allogeneic T cells. Proc Natl Acad Sci USA 1990; 87: 5633–5637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Truitt R, LeFever A, Shih C-Y . Graft-versus-leukemia reactions: experimental models and clinical trails. In: Gale R, Champlin R, eds. Progress in Bone Marrow Transplantation. Alan R Liss: New York, 1987, pp 219–232.

    Google Scholar 

  5. Slavin S, Weiss L, Morecki S, Weigenberg M . Eradication of murine leukemia with histoincompatible marrow grafts in mice conditioned with total lymphoid irradiation (TLI). Cancer Immunol Immunother 1981; 11: 155–159.

    Article  Google Scholar 

  6. Collins R, Rogers Z, Bennett M et al. Hematologic relapse of chronic myelogenous leukemia following allogeneic bone marrow transplantation: apparent graft-versus-leukemia effect following abrupt discontinuation of immunosuppression. Bone Marrow Transplant 1992; 10: 391–395.

    PubMed  Google Scholar 

  7. Odom L, August C, Githens J et al. Remission of relapsed leukaemia during a graft-versus-host reaction. A ‘graft-versus-leukaemia reaction’ in man? Lancet. 1978; 2: 537–540.

    Article  CAS  PubMed  Google Scholar 

  8. Horowitz M, Gale R, Sondel P et al. Graft-versus-leukemia reactions after bone marrow transplantation. Blood 1990; 75: 555–562.

    CAS  PubMed  Google Scholar 

  9. Gale R, Horowitz M, Ash R et al. Identical-twin bone marrow transplants for leukemia. Ann Int Med 1994; 120: 646–652.

    Article  CAS  PubMed  Google Scholar 

  10. Weiden P, Sullivan K, Flournoy N et al. Antileukemic effect of chronic graft-versus-host disease. Contribution to improved survival after allogeneic marrow transplantation. N Engl J Med 1981; 304: 1529–1533.

    Article  CAS  PubMed  Google Scholar 

  11. Apperley J, Mauro F, Goldman J et al. Bone marrow transplantation for chronic myeloid leukaemia in first chronic phase: importance of a graft-versus-leukaemia effect. Br J Haematol 1988; 69: 239–245.

    Article  CAS  PubMed  Google Scholar 

  12. Kolb H, Mittermuller J, Clemm C et al. Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients. Blood. 1990; 76: 2462–2465.

    CAS  PubMed  Google Scholar 

  13. Kolb H, Schattenberg A, Goldman J et al. Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. Blood 1995; 86: 2041–2050.

    CAS  PubMed  Google Scholar 

  14. Porter D, Roth M, McGarigle C et al. Induction of graft-versus-host disease as immunotherapy for relapsed chronic myeloid leukemia. N Engl J Med 1994; 330: 100–106.

    Article  CAS  PubMed  Google Scholar 

  15. Collins R, Shpilberg O, Drobyski W et al. Donor leukocyte infusions in 140 patients with relapsed malignancy after allogeneic bone marrow transplantation. J Clin Oncol 1997; 15: 433–444.

    Article  PubMed  Google Scholar 

  16. Mackinnon S, Papadopoulos E, Carabasi M et al. Adoptive Immunotherapy using donor leukocytes following bone marrow transplantation for chronic myeloid leukemia: is T cell dose important in determining biological response? Bone Marrow Transplant 1995; 15: 591–594.

    CAS  PubMed  Google Scholar 

  17. Drobyski W, Keever C, Roth M et al. Salvage immunotherapy using donor leukocyte infusions as treatment for relapsed chronic myelogenous leukemia after allogeneic bone marrow transplantation: efficacy and toxicity of a defined T-cell dose. Blood 1993; 82: 2310–2318.

    CAS  PubMed  Google Scholar 

  18. Porter D, Collins R, Shpilberg O et al. Long term follow-up of patients who achieved complete remission after donor leukocyte infusions. Biol Blood and Marrow Transplant 1999; 5: 253–261.

    Article  CAS  Google Scholar 

  19. Dazzi F, Szydlo RM, Cross NC et al. Durability of responses following donor lymphocyte infusions for patients who relapse after allogeneic stem cell transplantation for chronic myeloid leukemia. Blood 2000; 96: 2712–2716.

    CAS  PubMed  Google Scholar 

  20. Shimoni A, Gajewski J, Donato M et al. Long-term follow-up of recipients of CD8 depleted donor lymphocyte infusions for the treatment of chronic myelogenous leukemia relapsing after allogeneic progenitor cell transplantation. Biol Blood Marrow Transplant 2001; 7: 568–575.

    Article  CAS  PubMed  Google Scholar 

  21. Collins Jr, RH, Goldstein S, Giralt S et al. Donor leukocyte infusions in acute lymphocytic leukemia. Bone Marrow Transplant 2000; 26: 511–516.

    Article  PubMed  Google Scholar 

  22. Levine J, Braun T, Penza S et al. Prospective trial of chemotherapy and donor leukocyte infusions for relapse of advanced myeloid malignancies after allogeneic stem cell transplantation. J Clin Oncol 2001; 20: 405–412.

    Article  Google Scholar 

  23. Jones R, Ambinder R, Piantadosi S et al. Evidence of a graft-versus-lymphoma effect associated with allogeneic bone marrow transplantation. Blood 1991; 77: 649–653.

    CAS  PubMed  Google Scholar 

  24. Akpek G, Ambinder R, Piantadosi S et al. Long-term results of blood and marrow transplantation for Hodgkin's lymphoma. J Clin Oncol 2001; 19: 4314–4321.

    Article  CAS  PubMed  Google Scholar 

  25. Anderson J, Litzow M, Appelbaum F et al. Allogeneic, syngeneic, and autologous marrow transplantation for Hodgkin's disease: the 21 year Seattle experience. J Clin Oncol 1993; 11: 2342–2350.

    Article  CAS  PubMed  Google Scholar 

  26. Peniket A, Ruiz de Elvira M, Taghipour G et al. Allogeneic transplantation for lymphoma produces a lower relapse rate than autologous transplantation but survival is worse because of higher treatment related mortality. Blood 1997; 90: 255a.

    Google Scholar 

  27. Milpied N, Fielding A, Pearce R et al. Allogeneic bone marrow transplant is not better than autologous transplant for patients with relapsed Hodgkin's disease. J Clin Oncol 1996; 14: 1291–1296.

    Article  CAS  PubMed  Google Scholar 

  28. Appelbaum FR, Sullivan KM, Thomas ED et al. Allogeneic marrow transplantation in the treatment of MOPP-resistant Hodgkin's disease. J Clin Oncol 1985; 3: 1490–1494.

    Article  CAS  PubMed  Google Scholar 

  29. Phillips GL, Reece DE, Barnett MJ et al. Allogeneic marrow transplantation for refractory Hodgkin's disease. J Clin Oncol 1989; 7: 1039–1045.

    Article  CAS  PubMed  Google Scholar 

  30. Gajewski JL, Phillips GL, Sobocinski KA et al. Bone marrow transplants from HLA-identical siblings in advanced Hodgkin's disease. J Clin Oncol 1996; 14: 572–578.

    Article  CAS  PubMed  Google Scholar 

  31. Porter D, Connors J, VanDeerlin V et al. Graft-versus-tumor induction with donor leukocyte infusions as primary therapy for patients with malignancies. J Clin Oncol 1999; 17: 1234–1243.

    Article  CAS  PubMed  Google Scholar 

  32. Khouri I, Keating M, Korbling M et al. Transplant-lite: induction of graft-vs-malignancy using fludarabine-based nonablative chemotherapy and allogeneic blood progenitor-cell transplantation as treatment for lymphoid malignancies. J Clin Oncol 1998; 16: 2817–2824.

    Article  CAS  PubMed  Google Scholar 

  33. Giralt S, Estey E, Albitar M et al. Engraftment of allogeneic hematopoietic progenitor cells with purine analog-containing chemotherapy: harnessing graft-versus-leukemia without myeloablative therapy. Blood 1997; 89: 4531–4536.

    CAS  PubMed  Google Scholar 

  34. Slavin S, Nagler A, Naparstek E et al. Nonmyeloablative stem cell transplantation and cell therapy as an alternative to conventional bone marrow transplantation with lethal cyto-reduction for the treatment of malignant and nonmalignant hematologic diseases. Blood 1998; 91: 756–763.

    CAS  PubMed  Google Scholar 

  35. Porter D, Luger S, Duffy K et al. Allogeneic cell therapy for patients who relapse after autologous stem cell transplantation. Biol Blood Marrow Transplant 2001; 7: 230–238.

    Article  CAS  PubMed  Google Scholar 

  36. Anderlini P, Giralt S, Andersson B et al. Allogeneic stem cell transplantation with fludarabine-based, less intensive conditioning regimens as adoptive immunotherapy in advanced Hodgkin's disease. Bone Marrow Transplant 2000; 26: 615–620.

    Article  CAS  PubMed  Google Scholar 

  37. Kottaridis PD, Milligan DW, Chopra R et al. In vivo CAMPATH-1H prevents graft-versus-host disease following nonmyeloablative stem cell transplantation. Blood 2000; 96: 2419–2425.

    CAS  PubMed  Google Scholar 

  38. McSweeney PA, Niederwieser D, Shizuru JA et al. Hematopoietic cell transplantation in older patients with hematologic malignancies: replacing high-dose cytotoxic therapy with graft-versus-tumor effects. Blood 2001; 97: 3390–3400.

    Article  CAS  PubMed  Google Scholar 

  39. Spitzer T, McAfee S, Sackstein R et al. Intentional induction of mixed chimerism and achievement of antitumor responses after nonmyeloablative conditioning therapy and HLA-matched donor bone marrow transplantation for refractory hematologic malignancies. Biol Blood Marrow Transplant 2000; 6: 309–320.

    Article  CAS  PubMed  Google Scholar 

  40. Dey B, McAfee S, Sackstein R et al. Successful allogeneic stem cell transplantation with nonmyeloablative conditioning in patients with relapsed hematologic malignancy following autologous stem cell transplant. Biol Blood Marrow Transplant 2001; 7: 604–612.

    Article  CAS  PubMed  Google Scholar 

  41. Chakraverty R, Peggs K, Chopra R et al. Limiting transplantation-related mortality following unrelated donor stem cell transplantation by using a nonmyeloablative conditioning regimen. Blood 2002; 99: 1071–1078.

    Article  CAS  PubMed  Google Scholar 

  42. Carella AM, Cavaliere M, Lerma E et al. Autografting followed by nonmyeloablative immunosuppressive chemotherapy and allogeneic peripheral blood hematopoietic stem cell transplantation as treatment of resistant Hodgkin's disease and non-Hodgkin's lymphoma. J Clin Oncol 2000; 18: 3918–3924.

    Article  CAS  PubMed  Google Scholar 

  43. Pedrazzoli P, Da Prada GA, Giorgiani G et al. Allogeneic blood stem cell transplantation after a reduced-intensity, preparative regimen: a pilot study in patients with refractory malignancies. Cancer 2002; 94: 2409–2415.

    Article  PubMed  Google Scholar 

  44. Corradini P, Tarella C, Olivieri A et al. Reduced-intensity conditioning followed by allografting of hematopoietic cells can produce clinical and molecular remissions in patients with poor-risk hematologic malignancies. Blood 2002; 99: 75–82.

    Article  CAS  PubMed  Google Scholar 

  45. Bornhauser M, Thiede C, Schuler U et al. Dose-reduced conditioning for allogeneic blood stem cell transplantation: durable engraftment without antithymocyte globulin (In Process Citation). Bone Marrow Transplant 2000; 26: 119–125 (MEDLINE record in process).

    Article  CAS  PubMed  Google Scholar 

  46. Radich J, Gooley T, Snaders J et al. Second allogeneic transplantation after failure of first autologous transplantation. Biol Blood Marrow Transplant 2000; 6: 272–279.

    Article  CAS  PubMed  Google Scholar 

  47. Vose J, Bierman P, Anderson J et al. Progressive disease after high-dose therapy and autologous transplantation for lymphoid malignancy: clinical course and patient follow-up. Blood 1992; 80: 2142–2148.

    CAS  PubMed  Google Scholar 

  48. Chiang K, Weisdorf D, Davies S et al. Outcome of second bone marrow transplantation following a uniform conditioning regimen as therapy for malignant disease. Bone Marrow Transplant 1996; 17: 39–42.

    CAS  PubMed  Google Scholar 

  49. Mackinnon S, Papadopoulos E, Carabasi M et al. Adoptive immunotherapy evaluating escalating doses of donor leukocytes for relapse of chronic myeloid leukemia after bone marrow transplantation: separation of graft-versus-leukemia responses from graft-versus-host disease. Blood 1995; 86: 1261–1268.

    CAS  PubMed  Google Scholar 

  50. Dazzi F, Szydlo RM, Craddock C et al. Comparison of single-dose and escalating-dose regimens of donor lymphocyte infusion for relapse after allografting for chronic myeloid leukemia. Blood 2000; 95: 67–71.

    CAS  PubMed  Google Scholar 

  51. Alyea E, Soiffer R, Canning C et al. Toxicity and efficacy of defined doses of CD4+ donor lymphocytes for treatment of relapse after allogeneic bone marrow transplant. Blood 1998; 91: 3671–3680.

    CAS  PubMed  Google Scholar 

  52. Giralt S, Hester J, Huh Y et al. CD8-depleted donor lymphocyte infusion as treatment for relapsed chronic myelogenous leukemia after allogeneic bone marrow transplantation. Blood 1995; 86: 4337–4343.

    CAS  PubMed  Google Scholar 

  53. Waller EK, Boyer M . New strategies in allogeneic stem cell transplantation: immunotherapy using irradiated allogeneic T cells. Bone Marrow Transplant 2000; 25: S20–S24.

    Article  PubMed  Google Scholar 

  54. Slavin S, Naparstek E, Nagler A et al. Allogeneic cell therapy with donor peripheral blood cells and recombinant human interleukin-2 to treat leukemia relapse after allogeneic bone marrow transplantation. Blood 1996; 87: 2195–2204.

    CAS  PubMed  Google Scholar 

  55. Fowler DH, Kurasawa K, Smith R et al. Donor CD4-enriched cells of Th2 cytokine phenotype regulate graft-versus-host disease without impairing allogeneic engraftment in sublethally irradiated mice. Blood 1994; 84: 3540–3549.

    CAS  PubMed  Google Scholar 

  56. Hill GR, Ferrara JL . The primacy of the gastrointestinal tract as a target organ of acute graft-versus-host disease: rationale for the use of cytokine shields in allogeneic bone marrow transplantation. Blood 2000; 95: 2754–2759.

    CAS  PubMed  Google Scholar 

  57. Hill GR, Cooke KR, Teshima T et al. Interleukin-11 promotes T cell polarization and prevents acute graft-versus-host disease after allogeneic bone marrow transplantation. J Clin Invest 1998; 102: 115–123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Panoskaltsis-Mortari A, Taylor PA, Rubin JS et al. Keratinocyte growth factor facilitates alloengraftment and ameliorates graft-versus-host disease in mice by a mechanism independent of repair of conditioning-induced tissue injury. Blood 2000; 96: 4350–4356.

    CAS  PubMed  Google Scholar 

  59. Porter D, Bunin N, Laport G et al. Graft-vs-tumor induction with donor leukocyte infusions expanded ex vivo by activation with CD3/CD28 costimulation. Blood 2001; 98: 404a.

    Google Scholar 

  60. Bonini C, Ferrari G, Verzeletti S et al. HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft-versus-leukemia. Science 1997; 276: 1719–1724.

    Article  CAS  PubMed  Google Scholar 

  61. Servida P, Rossini S, Traversari C et al. Gene transfer into peripheral blood lymphocytes for in vivo immunomodulation of donor anti-tumor immunity in a patient affected by EBV-induced lymphoma. Blood 1993; 82: 214a.

    Google Scholar 

  62. Bollard CM, Rossig C, Calonge MJ et al. Adapting a transforming growth factor beta-related tumor protection strategy to enhance antitumor immunity. Blood 2002; 99: 3179–3187.

    Article  CAS  PubMed  Google Scholar 

  63. Gahn B, Siller-Lopez F, Pirooz AD et al. Adenoviral gene transfer into dendritic cells efficiently amplifies the immune response to LMP2A antigen: a potential treatment strategy for Epstein–Barr virus-positive Hodgkin's lymphoma. Int J Cancer 2001; 93: 706–713.

    Article  CAS  PubMed  Google Scholar 

  64. Papadopoulos E, Ladanyi M, Emanuel D et al. Infusions of donor leukocytes to treat Epstein–Barr virus-associated lymphoproliferative disorders after allogeneic bone marrow transplantation. N Engl J Med 1994; 330: 1185–1191.

    Article  CAS  PubMed  Google Scholar 

  65. Porter D, Orloff G, Antin J . Donor mononuclear cell infusions as therapy for B-cell lymphoproliferative disorder following allo-geneic bone marrow transplant. Transplant Sci 1994; 4: 11–15.

    Google Scholar 

  66. Small T, Papadopoulos E, Boulad F et al. Comparison of immune reconstitution after unrelated and related T-cell-depleted bone marrow transplantation: effect of patient age and donor leukocyte infusions. Blood 1999; 93: 467–480.

    CAS  PubMed  Google Scholar 

  67. Rooney C, Smith C, Ng C et al. Infusion of cytoxic T cells for the prevention and treatment of Epstein-Barr virus-induced lymphoma in allogeneic transplant recipients. Blood 1998; 92: 1549–1555.

    CAS  PubMed  Google Scholar 

  68. Roskrow M, Suzuki N, Gan Y et al. Epstein–Barr virus (EBV)-specific cytotoxic T lymphocytes for the treatment of patients with EBV-positive relapsed Hodgkin's disease. Blood 1998; 91: 2925–2934.

    CAS  PubMed  Google Scholar 

  69. Bocchia M, Korontsvit T, Xu Q et al. Specific human cellular immunity to bcr-abl oncogene derived peptides. Blood 1996; 87: 3587–3592.

    CAS  PubMed  Google Scholar 

  70. Molldrem JJ, Lee PP, Wang C et al. Evidence that specific T lymphocytes may participate in the elimination of chronic myelogenous leukemia. Nat Med 2000; 6: 1018–1023.

    Article  CAS  PubMed  Google Scholar 

  71. Molldrem J, Dermime S, Parker K et al. Targeted T-cell therapy for human leukemia: cytotoxic T lymphocytes specific for a peptide derived from proteinase 3 preferentially lyse human myeloid leukemia cells. Blood 1996; 88: 2450–2457.

    CAS  PubMed  Google Scholar 

  72. Mutis T, Gillespie G, Schrama E et al. Tetrameric HLA class I-minor histocompatibility antigen peptide complexes demonstrate minor histocompatibility antigen-specific cytotoxic T lymphocytes in patients with graft-versus-host disease. Nat Med 1999; 5: 839–842.

    Article  CAS  PubMed  Google Scholar 

  73. Kircher B, Stevanovic S, Urbanek M et al. Induction of HA-1-specific cytotoxic T-cell clones parallels the therapeutic effect of donor lymphocyte infusion. Br J Haematol 2002; 117: 935–939.

    Article  PubMed  Google Scholar 

  74. Mutis T, Verdijk R, Schrama E et al. Feasibility of immunotherapy of relapsed leukemia with ex vivo-generated cytotoxic T lymphocytes specific for hematopoietic system-restricted minor histocompatibility antigens. Blood 1999; 93: 2336–2341.

    CAS  PubMed  Google Scholar 

  75. Kwak LW, Taub DD, Duffey PL et al. Transfer of mye-loma idiotype-specific immunity from an actively immunised marrow donor. Lancet 1995; 345: 1016–1020.

    Article  CAS  PubMed  Google Scholar 

  76. Falkenburg JH, Wafelman AR, Joosten P et al. Complete remission of accelerated phase chronic myeloid leukemia by treatment with leukemia-reactive cytotoxic T lymphocytes. Blood 1999; 94: 1201–1208.

    CAS  PubMed  Google Scholar 

  77. Mandigers CM, Raemaekers JM, Schattenberg AV et al. Allogeneic bone marrow transplantation with T-cell-depleted marrow grafts for patients with poor-risk relapsed low-grade non-Hodgkin's lymphoma. British Journal of Haematology 1998; 100: 198–206.

    Article  CAS  PubMed  Google Scholar 

  78. Lokhorst HM, Schattenberg A, Cornelissen JJ et al. Donor leukocyte infusions are effective in relapsed multiple myeloma after allogeneic bone marrow transplantation. Blood 1997; 90: 4206–4211.

    CAS  PubMed  Google Scholar 

  79. Lokhorst HM, Schattenberg A, Cornelissen JJ et al. Donor lymphocyte infusions for relapsed multiple myeloma after allogeneic stem-cell transplantation: predictive factors for response and long-term outcome. J Clin Oncol 2000; 18: 3031–3037.

    Article  CAS  PubMed  Google Scholar 

  80. Salama M, Nevill T, Marcellus D et al. Donor leukocyte infusions for multiple myeloma. Bone Marrow Transplant 2000; 26: 1179–1184.

    Article  CAS  PubMed  Google Scholar 

  81. Michallet M, Bilger K, Garban F et al. Allogeneic hematopoietic stem-cell transplantation after nonmyeloablative preparative regimens: impact of pretransplantation and posttransplantation factors on outcome. J Clin Oncol 2001; 19: 3340–3349.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a grant from the American Cancer Society CRTG-00-089-01-LBC (DLP).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Porter, D., Stadtmauer, E. & Lazarus, H. ‘GVHD’: graft-versus-host disease or graft-versus-Hodgkin's disease? an old acronym with new meaning. Bone Marrow Transplant 31, 739–746 (2003). https://doi.org/10.1038/sj.bmt.1703895

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.bmt.1703895

Keywords

This article is cited by

Search

Quick links