Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Progenitor Cell Mobilisation

Optimising parameters for peripheral blood leukapheresis after r-metHuG-CSF (filgrastim) and r-metHuSCF (ancestim) in patients with multiple myeloma: a temporal analysis of CD34+ absolute counts and subsets

Abstract

Patients (n = 69) with multiple myeloma undergoing peripheral blood stem cell collection (PBSC) were treated with cyclophosphamide and a combination of recombinant methionyl human granulocyte colony-stimulating factor (r-metHuG-CSF, filgrastim) and recombinant methionyl human stem cell factor (r-metHuSCF, ancestim). The objectives of this study were to determine: (1) The proportion of patients reaching a target yield of 5 × 106 CD34+ cells/kg in one or two successive large-volume (20 liter) leukapheresis procedures; (2) the optimal collection time for leukapheresis; (3) mobilization kinetics of CD34+ subsets in response to G-CSF/SCF. All patients were mobilized with cyclophosphamide (2.5 g/m2) on day 0 followed by filgrastim (10 μg/kg) plus ancestim (20 μg/kg) commencing day 1 and continuing to day 11 or 12. Of the 65 evaluable patients, 57 were considered not heavily pretreated and 96.5% obtained a target of 5 × 106/kg in one collection. The median CD34+ cells/kg was 39.5 × 106 (range: 5.2–221.2 × 106). Subset analysis demonstrated the number of CD38, CD33, and CD133+ peaked at day 11; and CD34+, CD90+ cells peaked at day 10. The optimum day for leukapheresis was determined to be day 11. The median absolute peripheral blood CD34+ cell numbers on day 11 was 665 × 106/l (range: 76–1481 × 106/l). Eight of the 10 heavily pretreated patients were evaluable: three achieved the target dose in one leukapheresis (37.5%) and three (37.5%) achieved the target dose with two leukaphereses. Use of this mobilization strategy allowed the collection of high numbers of CD34+ cells and early progenitors and the ability to predictably schedule leukapheresis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Barlogie B, Jagannath S, Vesole DH et al. Superiority of tandem autologous transplantation over standard therapy for previously untreated multiple myeloma Blood 1997 89: 789 793

    CAS  PubMed  Google Scholar 

  2. Attal M, Harousseau JL, Stoppa AM et al. A prospective, randomized trial of autologous bone marrow transplantation and chemotherapy in multiple myeloma. Intergroupe Français du Myelome New Engl J Med 1996 335: 91 97

    Article  CAS  PubMed  Google Scholar 

  3. Fermand JP, Ravaud P, Chevret S et al. High-dose therapy and autologous peripheral blood stem cell transplantation in multiple myeloma: up-front or rescue treatment? Results of a multicenter sequential randomized clinical trial Blood 1998 92: 3131 3136

    CAS  PubMed  Google Scholar 

  4. Fermand JP, Ravaud P, Katsahian S et al. High dose therapy (HDT) and autologous blood stem cell (ABSC) transplantation versus conventional treatment in multiple myeloma (MM): results of a randomized trial in 190 patients 55 to 65 years of age Blood 1999 94: (Suppl. 1) 396a (Abstr.)

    Google Scholar 

  5. Lenhoff S, Hjorth M, Holmberg E et al. Impact on survival of high-dose therapy with autolotous stem cell support in patients younger than 60 years with newly diagnosed multiple myeloma: a population-based study Blood 2000 95: 7 11

    CAS  PubMed  Google Scholar 

  6. Henry JM, Sykes PJ, Brisco MJ et al. Comparison of myeloma cell contamination of bone marrow and peripheral blood stem cell harvests Br J Haematol 1996 92: 614 619

    Article  CAS  PubMed  Google Scholar 

  7. Harousseau JL, Attal M, Divine M et al. Comparison of autologous bone marrow transplantation and peripheral blood stem cell transplantation after first remission induction treatment in multiple myeloma Bone Marrow Transplant 1995 15: 963 969

    CAS  PubMed  Google Scholar 

  8. Tricot G, Jagannath S, Vesole D et al. Peripheral blood stem cell transplants for multiple myeloma: identification of favorable variables for rapid engraftment in 225 patients Blood 1995 85: 588 596

    CAS  PubMed  Google Scholar 

  9. Hohaus S, Goldschmidt H, Ehrhardt R, Haas R . Successful autografting following myeloablative therapy with blood stem cells mobilized by chemotherapy plus rhG-CSF Exp Hematol 1993 21: 508 514

    CAS  PubMed  Google Scholar 

  10. Schwartzberg L, Birch R, Blanco R et al. Rapid and sustained hematopoietic reconstitution by peripheral blood stem cell infusion alone following high-dose chemotherapy Bone Marrow Transplant 1993 11: 369 374

    CAS  PubMed  Google Scholar 

  11. Prince HM, Imrie K, Sutherland DR et al. Peripheral blood progenitor cell collections in multiple myeloma: predictors and management of inadequate collections Br J Haematol 1996 93: 142 145

    Article  CAS  PubMed  Google Scholar 

  12. Bensinger WI, Longin K, Appelbaum F et al. Peripheral blood stem cells (PBSCs) collected after recombinant granulocyte colony-stimulating factor (rhG-CSF): an analysis of factors correlating with the tempo of engraftment after transplantation Br J Haematol 1994 87: 825 831

    Article  CAS  PubMed  Google Scholar 

  13. Weaver CH, Hazelton B, Birch R et al. An analysis of engraftment kinetics as a function of the CD34 content of peripheral blood progenitor cell collections in 692 patients after the administration of myeloablative chemotherapy Blood 1995 86: 3961 3969

    CAS  PubMed  Google Scholar 

  14. Pecora AL, Preti RA, Gleim GW et al. CD34+CD33 cells influence days to engraftment and transfusion requirements in autologous blood stem-cell recipients J Clin Oncol 1998 16: 2093 2104

    Article  CAS  PubMed  Google Scholar 

  15. Dercksen MW, Rodenhuis S, Dirkson MKA et al. Subsets of CD34+ cells and rapid hematopoeitic recovery after peripheral blood stem cell transplantation J Clin Oncol 1995 13: 1922 1932

    Article  CAS  PubMed  Google Scholar 

  16. Henon P, Sovalat H, Bourderont D et al. Role of the CD34+ 38 cells in posttransplant hematopoietic recovery Stem Cells 1998 16: (Suppl. 1) 113 122

    Article  PubMed  Google Scholar 

  17. Negrin RS, Atkinson K, Leemhuis T et al. Transplantation of highly purified CD34+ Thy-1+ hematopoietic stem cells in patients with metastatic breast cancer Biol Blood Marrow Transplant 2000 6: 262 271

    Article  CAS  PubMed  Google Scholar 

  18. Duhrsen U, Villeval JL, Boyd J et al. Effects of recombinant human granulocyte colony-stimulating factor on hematopoietic progenitor cells in cancer patients Blood 1988 72: 2974 2981

    Google Scholar 

  19. Bensinger W, Singer J, Appelbaum F et al. Autologous transplantation with peripheral blood mononuclear cells collected after administration of recombinant granulocyte stimulating factor Blood 1993 81: 3158 3163

    CAS  PubMed  Google Scholar 

  20. Peters WP, Rosner G, Ross M et al. Comparative effects of granulocyte–macrophage colony-stimulating factor (GM-CSF) and granulocyte colony-stimulating factor (G-CSF) on priming peripheral blood progenitor cells for use with autologous bone marrow after high dose chemotherapy Blood 1993 81: 1709 1719

    CAS  PubMed  Google Scholar 

  21. Richman CM, Weiner RS, Yankee RA . Increase in circulating stem cells following chemotherapy in man Blood 1976 47: 1031 1039

    CAS  PubMed  Google Scholar 

  22. Stiff PJ, Murgo AJ, Wittes RE et al. Quantification of the peripheral blood colony forming unit-culture rise following chemotherapy Transfusion 1983 23: 500 503

    Article  CAS  PubMed  Google Scholar 

  23. Pettengell R, Testa NG, Swindell R et al. Transplantation potential of hematopoietic cells released into the circulation during routine chemotherapy for non-Hodgkin's lymphoma Blood 1993 82: 2239 2248

    CAS  PubMed  Google Scholar 

  24. Siena S, Bregni M, Brando B et al. Circulation of CD34+ hematopoietic stem cells in the peripheral blood of high-dose cyclophosphamide-treated patients: enhancement by intravenous recombinant human granulocyte-macrophage colony-stimulating factor Blood 1989 74: 1905 1914

    CAS  PubMed  Google Scholar 

  25. Smolowicz AG, Villman K, Tidefelt U . Large-volume apheresis for the harvest of peripheral blood progenitor cells for autologous transplantation Transfusion 1997 37: 188 192

    Article  CAS  PubMed  Google Scholar 

  26. McNiece IK, Langley KE, Zsebo KM . Rebombinant human stem cell factor synergizes with GM-CSF, G-CSF, IL-3 and Epo to stimulate human progenitor cells of the myeloid and erythroid lineages Exp Hematol 1991 19: 226 231

    CAS  PubMed  Google Scholar 

  27. Briddell RA, Hartley CA, Smith KA, McNiece IK . Recombinant rat stem cell factor synergizes with recombinant human granulocyte colony-stimulating factor in vivo in mice to mobilize peripheral blood progenitor cells that have enhanced repopulating potential Blood 1993 82: 1720 1723

    CAS  PubMed  Google Scholar 

  28. de Revel T, Appelbaum FR, Storb R et al. Effects of granulocyte colony-stimulating factor and stem cell factor, alone and in combination on the mobilization of peripheral blood cells that engraft lethally irradiated dogs Blood 1994 83: 3795 3799

    CAS  PubMed  Google Scholar 

  29. Andrews RG, Briddell RA, Knitter GH et al. In vivo synergy between recombinant human stem cell factor and recombinant human granulocyte colony-stimulating factor in baboons: enhanced circulation of granulocytic, erythrocytic, and megakaryocytic progenitor cells Blood 1994 84: 800 810

    CAS  PubMed  Google Scholar 

  30. Yan XQ, Briddell R, Hartley C et al. Mobilization of long-term hematopoietic reconstituting cells in mice by the combination of stem cell factor plus granulocyte colony-stimulating factor Blood 1994 84: 795 799

    CAS  PubMed  Google Scholar 

  31. Weaver A, Ryder D, Crowther D et al. Increased numbers of long-term culture-initiating cells in the apheresis product of patients randomized to receive increasing doses of stem cell factor administered in combination with chemotherapy and a standard dose of granulocyte colony-stimulating factor Blood 1996 88: 3323 3328

    CAS  PubMed  Google Scholar 

  32. Shpall EJ, Wheeler CA, Turner SA et al. A randomised phase 3 study of peripheral blood progenitor cell mobilization with stem cell factor and filgrastim in high risk breast cancer patients Blood 1999 93: 2491 2501

    CAS  PubMed  Google Scholar 

  33. Gratama JW, Keeney M, Sutherland DR . Enumeration of CD34+ hematopoietic stem and progenitor cells Curr Prot Cytometry 1999 6.4.1 6.4.22

  34. Durie BGM, Salmon SE . A clinical staging system for multiple myeloma Cancer 1975 36: 842

    Article  CAS  PubMed  Google Scholar 

  35. Sutherland DR, Anderson L, Keeney M et al. The ISHAGE guidelines for CD34+ cell determination by flow cytometry J Hematother 1996 5: 213 226

    Article  CAS  PubMed  Google Scholar 

  36. Keeney M, Chin-Yee I, Weir K et al. Single platform flow cytometric absolute CD34+ cell counts based on the ISHAGE guidelines Cytometry 1998 34: 61 70

    Article  CAS  PubMed  Google Scholar 

  37. Keeney M, Chin-Yee I, Gratama JW, Sutherland DR . Perspectives: Isotype controls in the analysis of lymphocytes and CD34+ stem/progenitor cells by flow cytometry – Time to let go! Cytometry 1998 34: 280 283

    Article  CAS  PubMed  Google Scholar 

  38. Bensinger W, Appelbaum F, Rowley S et al. Factors that influence collection and engraftment of autologous peripheral blood stem cells J Clin Oncol 1995 13: 2547 2555

    Article  CAS  PubMed  Google Scholar 

  39. Glaspy JA, Shpall EJ, LeMaistre CF et al. Peripheral blood progenitor cell mobilization using stem cell factor in combination with filgrastim in breast cancer patients Blood 1997 90: 2939 2951

    CAS  PubMed  Google Scholar 

  40. Anderlini P, Przepiorka D, Lauppe J et al. Collection of peripheral blood stem cells from normal donors 60 years of age or older Br J Haematol 1997 97: 485 487

    Article  CAS  PubMed  Google Scholar 

  41. Facon T, Harousseau JL, Maloisel F et al. Stem cell factor in combination with filgrastim after chemotherapy improves peripheral blood progenit or cell yield and reduces apheresis requirements in multiple myeloma patients: a randomized, controlled trial Blood 1999 94: 1218 1225

    CAS  PubMed  Google Scholar 

  42. Moskowitz CH, Stiff P, Gordon MS et al. Recombinant methionyl human stem cell factor and filgrastim for peripheral blood progenitor cell mobilization and transplantation in non-Hodgkin's lymphoma patients – results of a phase 1/11 trial Blood 1997 89: 3136 3147

    CAS  PubMed  Google Scholar 

  43. Stiff P, Gingrich R, Luger S et al. A randomized phase 2 study of PBPC mobilization by stem cell factor and filgrastim in heavily pretreated patients with Hodgkin's disease or non-Hodgkin's lymphoma Bone Marrow Transplant 2000 26: 471 481

    Article  CAS  PubMed  Google Scholar 

  44. Costa JJ, Demetri GD, Harrist TJ et al. Recombinant human stem cell factor (kit ligand) promotes human mast cell and melanocyte hyperplasia and functional activation in vivo J Exp Med 1996 183: 2681 2686

    Article  CAS  PubMed  Google Scholar 

  45. Grichnik JM, Crawford J, Jimenez F et al. Human recombinant stem-cell factor induces melanocytic hyperplasia in susceptible patients J Am Acad Detmatol 1995 33: 577 583

    Article  CAS  Google Scholar 

  46. Weaver CH, Hazelton B, Birch R et al. An analysis of engraftment kinetics as a function of the CD34 content of peripheral blood progenitor cell collections in 692 patients after the administration of myeloablative chemotherapy Blood 1995 86: 3961 3969

    CAS  PubMed  Google Scholar 

  47. Schulman KA, Birch R, Zhen B et al. Effect of cell dose on resource utilization in patients after high-dose chemotherapy with peripheral blood stem cell support J Clin Oncol 1999 17: 1227 1233

    Article  CAS  PubMed  Google Scholar 

  48. Weaver A, Chang J, Wrigley E et al. Randomized comparison of progenitor-cell mobilization using chemotherapy, stem-cell factor, and filgrastim or chemotherapy plus filgrastim alone in patients with ovarian cancer J Clin Oncol 1998 8: 2601 2612

    Article  Google Scholar 

  49. Goldberg SL, Mangan KF, Klumpp TR et al. Complications of peripheral blood stem cell harvesting: review of 554 PBSC leukaphereses J Hematother 1995 4: 85 90

    Article  CAS  PubMed  Google Scholar 

  50. Ossenkoppele GJ, Schuurhuis GJ, Jonkhoff AR et al. G-CSF (filgrastim)-stimulated whole blood kept unprocessed at 4°C does support a BEAM-like regimen in bad risk lymphoma Bone Marrow Transplant 1996 18: 427 431

    CAS  PubMed  Google Scholar 

  51. Ruiz-Arguelles GJ, Ruiz-Arguelles A, Perez-Romano B et al. Non-cryopreserved peripheral blood stem cells autotransplants for hematological malignancies can be performed entirely on an outpatient basis Am J Hematol 1998 58: 161 164

    Article  CAS  PubMed  Google Scholar 

  52. Drager AM, Ossenkoppele GJ, Jonkhoff AR et al. New strategies in hematopoietic stem cell transplantation: G-CSF-mobilized unprocessed whole blood Braz J Med Biol Res 1998 31: 49 53

    Article  CAS  PubMed  Google Scholar 

  53. Allan DS, Keeney M, Howson-Jan K et al. Number of viable CD34+ cells reinfused predicts engraftment in autologous hematopoietic stem cell transplantation Bone Marrow Transplant 2002 29: 967 972

    Article  CAS  PubMed  Google Scholar 

  54. Stewart AK, Imrie K, Keating A et al. Optimizing the CD34+ and CD34+ Thy-1+ stem cell content of peripheral blood collections Exp Hematol 1995 23: 1619 1627

    CAS  PubMed  Google Scholar 

  55. Murray L, Chen B, Galy A et al. Enrichment of human hematopoietic stem cell activity in the CD34+Thy-l+Lin subpopulation from mobilized peripheral blood Blood 1995 85: 368 378

    CAS  PubMed  Google Scholar 

  56. Durett AG, Champlin RE, Gee AP . Distribution of AC133+ cells during G-CSF mobilization of CD34+ cells in normal donors Blood 1998 92: (Suppl. 1) 682a (Abstr. 2812)

    Google Scholar 

  57. Yin AH, Miraglia S, Zanjani ED et al. AC133, a novel marker for human hematopoietic stem and progenitor cells Blood 1997 90: 5002 5012

    CAS  PubMed  Google Scholar 

  58. Vose JM, Bierman PJ, Atkinson K et al. Transplantation following high dose chemo and CD34+Thy-1+/lin peripheral blood stem cells (PBSC) in patients with non-Hodgkin's lymphoma Blood 1998 92: (Suppl. 1) 726a (Abstr. 2979)

    Google Scholar 

  59. Michallet M, Philip T, Philip I et al. Transplantation with selected autologous peripheral blood CD34+Thy-1+ hematopoietic stem cells (HSCs) in multiple myeloma: impact of HSC dose on engraftment, safety and immune reconstitution Exp Hematol 2000 28: 858 870

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chin-Yee, I., Keeney, M., Stewart, A. et al. Optimising parameters for peripheral blood leukapheresis after r-metHuG-CSF (filgrastim) and r-metHuSCF (ancestim) in patients with multiple myeloma: a temporal analysis of CD34+ absolute counts and subsets. Bone Marrow Transplant 30, 851–860 (2002). https://doi.org/10.1038/sj.bmt.1703765

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.bmt.1703765

Keywords

This article is cited by

Search

Quick links