Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • EELS (Ethical Economic Legal and Social) Article
  • Published:

EELS

Ethical considerations in the collection of genetic data from critically ill patients: What do published studies reveal about potential directions for empirical ethics research?

Abstract

Critical illness trials involving genetic data collection are increasingly commonplace and pose challenges not encountered in less acute settings, related in part to the precipitous, severe and incapacitating nature of the diseases involved. We performed a systematic literature review to understand the nature of such studies conducted to date, and to consider, from an ethical perspective, potential barriers to future investigations. We identified 79 trials enrolling 24 499 subjects. Median (interquartile range) number of participants per study was 263 (116.75–430.75). Of these individuals, 16 269 (66.4%) were Caucasian, 1327 (5.4%) were African American, 1707 (7.0%) were Asian Pacific Islanders and 139 (0.6%) were Latino. For 5020 participants (20.5%), ethnicity was not reported. Forty-eight studies (60.8%) recruited subjects from single centers and all studies examined a relatively small number of genetic markers. Technological advances have rendered it feasible to conduct clinical studies using high-density genome-wide scanning. It will be necessary for future critical illness trials using these approaches to be of greater scope and complexity than those so far reported. Empirical research into issues related to greater ethnic inclusivity, accuracy of substituted judgment and specimen stewardship may be essential for enabling the conduct of such trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Collins FS . Shattuck lecture—medical and societal consequences of the human genome project. N Engl J Med 1999; 342: 28–37.

    Article  Google Scholar 

  2. Bell J . The new genetics in clinical practice. Br Med J 1998; 316: 618–620.

    Article  CAS  Google Scholar 

  3. Evans WE, Relling MV . Pharmacogenomics: translating functional genomics into rational therapeutics. Science 1999; 286: 487–491.

    Article  CAS  PubMed  Google Scholar 

  4. Evans WE, McLeod HL . Pharmacogenomics—drug disposition, drug targets, and side effects. N Engl J Med 2003; 348: 538–549.

    Article  CAS  PubMed  Google Scholar 

  5. Freeman BD, McLeod HL . Challenges of implementing pharmacogenetics in the critical care environment. Nat Rev Drug Discov 2004; 3: 88–93.

    Article  CAS  PubMed  Google Scholar 

  6. Wadman M . James Watson's genome sequenced at high speed. Nature 2008; 452: 788.

    Article  CAS  PubMed  Google Scholar 

  7. Espeland MA, Dotson K, Jaramillo SA, Kahn SE, Harrison B, Montez M et al. Consent for genetics studies among clinical trial participants: findings from Action for Health in Diabetes (Look AHEAD). Clin Trials 2006; 3: 456.

    Google Scholar 

  8. Davis N, Pohlman A, Gehlbach B, Kress JP, McAtee J, Herlitz J et al. Improving the process of informed consent in the critically ill. J Am Med Assoc 2003; 289: 1963–1968.

    Article  Google Scholar 

  9. Luce JM . Research ethics and consent in the intensive care unit. Curr Opin Crit Care 2003; 9: 540–544.

    Article  PubMed  Google Scholar 

  10. Ad Hoc Statement Committee of the American Thoracic Society. The ethical conduct of clinical research involving critically ill patients in the United States and Canada. Am J Respir Crit Care Med 2004; 170: 1375–1384.

    Article  Google Scholar 

  11. Luce JM . Is the concept of informed consent applicable to clinical research involving critically ill patients? Crit Care Med 2003; 31 (3 Suppl): S153–S160.

    Article  PubMed  Google Scholar 

  12. Silverman HJ, Luce JM, Lanken PN, Morris AH, Harabin AL, Oldmixon CF et al. Recommendations for informed consent forms for critical care clinical trials. Crit Care Med 2005; 33: 867–882.

    Article  PubMed  Google Scholar 

  13. Freeman BD, Kennedy CR, Coopersmith CM, Zehnbauer BA, Buchman TG . Genetic testing and research in critical care: surrogates' perspective. Crit Care Med 2006; 34: 986–994.

    Article  PubMed  Google Scholar 

  14. Lavery JV, Slutsky AS . Substitute decisions about genetic testing in critical care research: a glimpse behind the curtain. Crit Care Med 2006; 34: 1257–1259.

    Article  CAS  PubMed  Google Scholar 

  15. Clark MF, Baudouin SV . A systematic review of the quality of genetic association studies in human sepsis. Intensive Care Med 2006; 32: 1706–1712.

    Article  PubMed  Google Scholar 

  16. Mira JP, Cariou A, Grall F, Delclaux C, Losser MR, Heshmati F et al. Association of TNF2, a TNF promoter polymorphism, with septic shock susceptibility and mortality—a multicenter study. J Am Med Assoc 1999; 282: 561–568.

    Article  CAS  Google Scholar 

  17. Tang G, Huang S, Yien H, Chen C, Wu CW, Chi C et al. Tumor necrosis factor gene polymorphism and septic shock in surgical infection. Crit Care Med 2000; 28: 2733–2736.

    Article  CAS  PubMed  Google Scholar 

  18. O'Keefe GE, Hybki DL, Munford RS . The G->a single nucleotide polymorphism at the −308 position in the tumor necrosis factor-[alpha] promoter increases the risk for severe sepsis after trauma. J Trauma 2002; 52: 817–826.

    CAS  PubMed  Google Scholar 

  19. Majetschak M, Obertacke U, Schade FU, Bardenheuer M, Voggenreiter G, Bloemeke B et al. Tumor necrosis factor gene polymorphisms, leukocyte function, and sepsis susceptibility in blunt trauma. Clin Diagn Lab Immunol 2002; 9: 1205–1211.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kerlin BA, Yan SB, Isermann BH, Brandt TJ, Sood R, Basson BR et al. Survival advantage associated with heterozygous factor V Leiden mutation in patients with severe sepsis and in mouse endotoxemia. Blood 2003; 102: 3085–3092.

    Article  CAS  PubMed  Google Scholar 

  21. Yan SB, Nelson DR . Effect of factor V Leiden polymorphism in severe sepsis and on treatment with recombinant human activated protein C. Crit Care Med 2004; 32 (Suppl): S239–S246.

    Article  CAS  PubMed  Google Scholar 

  22. Waterer GW, Quasney MW, Cantor RM, Wunderink RG . Septic shock and respiratory failure in community acquired pneumonia have different TNF polymorphism associations. Am J Respir Crit Care Med 2001; 163: 1599–1604.

    Article  CAS  PubMed  Google Scholar 

  23. Schaaf BM, Boehmke F, Esnashaashari H, Seitzer U, Kothe H, Maas M et al. Pneumococcal septic shock is associated with the IL-10-1082 gene promoter polymorphism. Am J Respir Crit Care Med 2003; 168: 476–480.

    Article  PubMed  Google Scholar 

  24. Marshall RP, Webb S, Bellingan GJ, Montgomery HE, Chaudhari B, McAnulty RJ et al. Angiotensin converting enzyme insertion/deletion polymorphism is associated with susceptibility and outcome in acute respiratory distress syndrome. Am J Respir Crit Care Med 2002; 166: 646–650.

    Article  PubMed  Google Scholar 

  25. Majetschak M, Flohe S, Obertacke U, Schroder J, Staubach K, Nast-Kob D et al. Relation of a TNF gene polymorphism to severe sepsis in trauma patients. Ann Surg 1999; 230: 207–214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Stuber F, Peterson M, Bokelman F, Schade U . A genomic polymorphism in the tumor necrosis factor locus influences plasma tumor necrosis factor-alpha concentrations and outcome of patients with severe sepsis. Crit Care Med 1996; 24: 381–384.

    Article  CAS  PubMed  Google Scholar 

  27. Lowe PR, Galley HF, Ashraf AF, Webster NR . Influence of interleukin-10 polymorphisms on interleukin-10 expression and survival in patients with sepsis. Crit Care Med 2003; 31: 34–38.

    Article  CAS  PubMed  Google Scholar 

  28. Lorenz E, Mira JP, Frees KL, Schwartz DA . Relevance of mutations in the TLR4 receptor in patients with Gram negative septic shock. Arch Inter Med 2002; 162: 1028–1032.

    Article  CAS  Google Scholar 

  29. Schroeder S, Reck M, Hoeft A, Stuber F . Analysis of two leukocyte antigen linked polymorphic heat shock protein 70 genes in patients with severe sepsis. Crit Care Med 1999; 27: 1265–1270.

    Article  CAS  PubMed  Google Scholar 

  30. Gibot S, Cariou A, Drouet L, Rossignol M, Ripoll L . Association between a genomic polymorphism between the CD14 locus and septic shock susceptibility and mortality rate. Crit Care Med 2002; 30: 969–973.

    Article  CAS  PubMed  Google Scholar 

  31. Garred P, Strom JJ, Quist L, Taaning E, Madsen HO . Association of mannose binding lectin polymorphisms with sepsis and fatal outcome in patients with systemic inflammatory response syndrome. J Infect Dis 2003; 188: 1394–1403.

    Article  CAS  PubMed  Google Scholar 

  32. Hubacek JA, Stuber F, Frolich D, Book M, Wetegrove S, Roth G et al. The common function C(-159)T polymorphism within the promoter region of the lipopolysaccharide receptor is not associated with sepsis development or mortality. Genes Immun 2000; 1: 405–407.

    Article  CAS  PubMed  Google Scholar 

  33. Ma P, Chen D, Pan J, Du B . Genomic polymorphisms within the interleukin-1 family cytokines influences the outcome of septic patients. Crit Care Med 2002; 30: 1046–1050.

    Article  CAS  PubMed  Google Scholar 

  34. Schluter B, Raufhake C, Erren M, Schotte H, Kippe F, Rust S et al. Effect of the interleukin-6 promoter polymorphism (−174 G/C) gene on the incidence and outcome of sepsis. Crit Care Med 2002; 30: 32–37.

    Article  CAS  PubMed  Google Scholar 

  35. Arnalich F, Lopez-Maderuelo D, Codoceo R, Lopez J, Solis-Gorrido LM, Capiscol C et al. Interleukin-1 receptor antagonist gene polymorphism and mortality with patients in sepsis. Clin Exp Immunol 2002; 127: 331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Stassen NA, Leslie-Norflet LA, Robertson AM, Eichenberger MR, Polk HC . Interferon-gamma gene polymorphisms and the development of sepsis in patients with trauma. Surgery 2002; 132: 289–292.

    Article  PubMed  Google Scholar 

  37. Davis EG, Eichenberger MR, Gran BS, Polk HC . Microsatellite marker of interferon gamma receptor 1 gene correlates with infection following major trauma. Surgery 2000; 128: 301–305.

    Article  CAS  PubMed  Google Scholar 

  38. Barber RC, O'Keefe GE . Characterization of a single nucleotide polymorphism in the lipopolysaccharide binding protein and its association with sepsis. Am J Respir Crit Care Med 2003; 167: 1316–1320.

    Article  PubMed  Google Scholar 

  39. Barber RC, Aragaki CC, Rivera-Chavez FA, Purdue GF, Hunt JL, Horton JW . TLR4 and TNF-alpha polymorphisms are associated with an increased risk of severe sepsis following burn injury. J Med Genet 2004; 41: 808–813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sutherland AM, Walley KR, Russell JA . Polymorphisms in CD14, mannose-binding lectin, and Toll-like receptor-2 are associated with increased prevalence of infection in critically ill adults. Crit Care Med 2005; 33: 638–644.

    Article  CAS  PubMed  Google Scholar 

  41. Watanabe E, Hirasawa H, Oda S, Matsuda K, Hatano M, Tokuhisa T . Extremely high interleukin-6 blood levels and outcome in the critically ill are associated with tumor necrosis factor- and interleukin-1-related gene polymorphisms. Crit Care Med 2005; 33: 89–97.

    Article  CAS  PubMed  Google Scholar 

  42. Quasney MW, Waterer GW, Dahmer MK, Kron GK, Zhang Q, Kessler LA et al. Association between surfactant protein B +1580 polymorphism and the risk of respiratory failure in adults with community acquired pneumonia. Crit Care Med 2004; 32: 1115–1119.

    Article  CAS  PubMed  Google Scholar 

  43. Hubacek JA, Stuber F, Frolich D, Book M, Wetegrove S, Ritter M et al. Gene variants of the bactericidal/permeability increasing protein and lipopolysaccharide binding protein in sepsis patients: gender-specific genetic predisposition to sepsis. Crit Care Med 2001; 29: 557–561.

    Article  CAS  PubMed  Google Scholar 

  44. Fang XM, Schroder S, Hoeft A, Stuber F . Comparison of two polymorphisms of the interleudin-1 gene family: interleukin-1 receptor antagonist polymorphism contributes to susceptibility to severe sepsis. Crit Care Med 1999; 27: 1330–1334.

    Article  CAS  PubMed  Google Scholar 

  45. Quasney MW, Watere GW, Dahmer MK, Turner D, Zhang Q, Cantor RM . Intracellular adhesion molecule Gly241Arg polymorphism has no impact on ARDS or septic shock in community-acquired pneumonia. Chest 2002; 121 (3 Suppl): 85S–86S.

    Article  PubMed  Google Scholar 

  46. Gordon AC, Lagan AL, Aganna E, Cheung L, Peters CJ, McDermott MF et al. TNF and TNFR polymorphisms in severe sepsis and septic shock: a prospective multicentre study. Genes Immun 2004; 5: 631–640.

    Article  CAS  PubMed  Google Scholar 

  47. Sutherland AM, Walley KR, Manodha S, Russell JA . The association of interleukin 6 haplotype clades with mortality in critically ill adults. Arch Inter Med 2005; 165: 75–82.

    Article  CAS  Google Scholar 

  48. Heesen M, Bloemeke B, Schade U, Obertacke U, Majetschak M . The -260 C to T promoter polymorphism of the lipopolysaccharide receptor CD14 and severe sepsis in trauma patients. Intensive Care Med 2002; 28: 1161–1163.

    Article  PubMed  Google Scholar 

  49. Rauchschwalbe SK, Maseizik T, Mittelkotter U, Schluter B, Patzig C, Reith HB . Effect of the LT-alpha (+250G/A) polymorphism on markers of inflammation and clinical outcome in critically ill patients. J Trauma 2004; 56: 815–822.

    Article  CAS  PubMed  Google Scholar 

  50. Stassen NA, Breit CM, Norfleet LA, Polk HC . IL-18 promoter polymorphisms correlate with the development of post-injury sepsis. Surgery 2003; 134: 351–356.

    Article  PubMed  Google Scholar 

  51. Dianliang Z, Jieshou L, Zhiwei J, Baojun Y . Association of plasma levels of tumor necrosis factor (TNF)-alpha and its soluble receptors, two polymorphisms of the TNF gene, with acute severe pancreatitis and early septic shock due to it. Pancreas 2003; 26: 339–343.

    Article  PubMed  Google Scholar 

  52. Agnese DM, Calvano JE, Hahm SJ, Coyle SM, Corbett SA, Calvano SE et al. Human toll-like receptor 4 mutations but not CD14 polymorphisms are associated with an increased risk of gram-negative infections. J Infect Dis 2002; 186: 1522–1525.

    Article  CAS  PubMed  Google Scholar 

  53. Calvano JE, Um JY, Agnese DM, Hahm SJ, Kumar A, Coyle SM et al. Influence of the TNF-alpha and TNF-beta polymorphisms upon infectious risk and outcome in surgical intensive care patients. Surg Infect 2003; 4: 163–169.

    Article  Google Scholar 

  54. Frerkling I, Sengler C, Gunther A, Walmrath H, Stevens P, Witt H et al. Evaluation of the −26G>A CC16 polymorphism in the acute respiratory distress syndrome. Crit Care Med 2005; 33: 2404–2406.

    Article  Google Scholar 

  55. Lin Z, Pearson C, Chinchilli V, Pietschmann SM, Luo J, Pison U et al. Polymorphisms of human SP-A, SP-B, and SP-D genes: association of SP-B Thr131Ile with ARDS. Clin Genet 2000; 59: 181–191.

    Google Scholar 

  56. Moretti EW, Morris RW, Podgoreanu M, Schwinn DA, Newman MF, Bennett E et al. APOE polymorphism is associated with risk of severe sepsis in surgical patients. Crit Care Med 2005; 33: 2521–2526.

    Article  CAS  PubMed  Google Scholar 

  57. Gong MN, Wei Z, Xu L, Miller DP, Thompson BT, Christiani DC . Polymorphisms in the surfactant protein-B gene, gender, and the risk of direct pulmonary injury and ARDS. Chest 2004; 125: 211.

    Article  Google Scholar 

  58. Gong MN, Zhou W, Williams PL, Thompson BT, Pothier L, Boyce P et al. 308GA and TNFB polymorphisms in acute respiratory distress syndrome. Eur Respir J 2005; 26: 382–389.

    Article  CAS  PubMed  Google Scholar 

  59. Gordon AC, Waheed U, Hansen TK, Hitman GA, Garrard CS, Turner MW et al. Mannose-binding lectin polymorphisms in severe sepsis: relationship to levels, incidence, and outcome. Shock 2006; 25: 88–93.

    Article  CAS  PubMed  Google Scholar 

  60. Gong MN, Zhou W, Williams PL, Thompson T, Pothier L, Christiani DC . Polymorphisms in the mannose binding lectin-2 gene and acute respiratory distress syndrome. Crit Care Med 2007; 35: 48–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gong MN, Thompson BT, Williams PL, Zhou W, Wang MZ, Pothier L et al. Interleukin-10 polymorphism in position-1082 and acute respiratory distress syndrome. Eur Respir J 2006; 27: 674–681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Arcaroli J, Silva E, Maloney JP, He Q, Svetkauskaite D, Murphy JR et al. Variant IRAK-1 haplotype is associated with increased nuclear factor-kB activation and worse outcomes in sepsis. Am J Respir Crit Care Med 2008; 173: 1335–1341.

    Article  CAS  Google Scholar 

  63. Boudoin SV, Saunders D, Tiangyou W, Elson JL, Poynter J, Pyle A et al. Mitochondrial DNA and survival after sepsis: a prospective study. Lancet 2008; 366: 2118–2121.

    Article  CAS  Google Scholar 

  64. D'Avila L, Albarus MH, Franco CR, Aguiar BB, Oliveira JR, Dias FS et al. Effect of CD14-260C>T polymorphism on the mortality of critically ill patients. Immunol Cell Biol 2006; 84: 342–348.

    Article  CAS  PubMed  Google Scholar 

  65. Eklund C, Huttunen R, Syrjanen J, Laine J, Vuento R, Hurme M . Polymorphism of the c-reactive protein gene is associated with mortality in bacteremia. Scand J Infect Dis 2006; 38: 1069–1073.

    Article  CAS  PubMed  Google Scholar 

  66. Flores C, Maca-Meyer N, Perez-Mendez L, Sanguesa R, Espinosa E, Muriel A et al. A CXCL2 tandem repeat promoter polymorphism is associated with susceptibility to severe sepsis in the Spanish population. Genes Immun 2008; 7: 141–149.

    Article  CAS  Google Scholar 

  67. Gao L, Grant A, Halder I, Brower R, Sevransky J, Maloney JP et al. Novel polymorphisms in the myosin light chain kinase gene confer risk of acute lung injury. Am J Respir Cell Mol Biol 2006; 34: 487–495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Garcia J, Vinasco LM . Genomic insights into acute inflammatory lung injury. Am J Physiol Lung Cell Mol Physiol 2006; 291: L1113–L1117.

    Article  CAS  PubMed  Google Scholar 

  69. Lorenz E, Mira JP, Cornish KL, Arbour NC, Schwartz DA . A novel polymorphism in the toll-like receptor 2 gene and its potential association with staphylococcal infection. Infect Immun 2000; 68: 6398–6401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Garnacho-Montero J, Aldabo-Pallas T, Garnacho-Montero C, Cayuela A, Jimenez R, Barroso S et al. Timing of adequate antibiotic therapy is a greater determinant of outcome than are TNF and IL-10 polymorphisms in patients with sepsis. Crit Care 2006; 10: R111.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Nakada T, Hirasawa H, Oda S, Shiga H, Matsuda K, Nakamura M et al. Influence of toll-like receptor 4, CD14, tumor necrosis factor, and interleukin-10 gene polymorphisms on clinical outcome in Japanese critically ill patients. J Surg Res 2005; 129: 322–328.

    Article  CAS  PubMed  Google Scholar 

  72. Nonas S, Finigan J, Gao L, Garcia J . Functional genomic insights into acute lung injury: role of ventilators and mechanical stress. Proc Am Thoracic Soc 2005; 2: 188–194.

    Article  CAS  Google Scholar 

  73. O'Dwyer M, Dempsey F, Crowley V, Kelleher D, McManus R, Ryan T . Septic shock is correlated with asymmetrical dimethyl arginine levels, which may be influenced by a polymorphism in the dimethylarginine dimethylaminohydrolase II gene: a prospective observational study. Crit Care 2006; 10: R139.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Riese J, Woerner K, Zimmermann P, Denzel C, Hohenberger W, Haupt W . Association of a TNF-β gene polymorphism with complications after major abdominal operations. Shock 2003; 19: 1–4.

    Article  CAS  PubMed  Google Scholar 

  75. Walley KR, Russell JA . Protein C-1641AA is associated with decreased survival and more organ dysfunction in severe sepsis. Crit Care Med 2007; 35: 12–17.

    Article  CAS  PubMed  Google Scholar 

  76. Watanabe E, Hirasawa H, Oda S, Shiga H, Matsuda K, Nakamura M et al. Cytokine-related genotypic differences in peak interleukin-6 blood levels of patients with SIRS and septic complications. J Trauma 2005; 59: 1181–1190.

    Article  CAS  PubMed  Google Scholar 

  77. Wattanathum A, Manocha S, Groshaus H, Russell JA, Walley KR . Interleukin-10 haplotype associated with increased mortality in critically ill patients with sepsis from pneumonia but not in patients with extrapulmonary sepsis. Chest 2005; 128: 1690–1698.

    Article  CAS  PubMed  Google Scholar 

  78. Zhang D, Li J, Jiang Z, Yu B, Tang X . Association of two polymorphisms of tumor necrosis factor gene with acute severe pancreatitis. J Surg Res 2003; 112: 138–143.

    Article  CAS  PubMed  Google Scholar 

  79. Zhang D, Zheng H, Yu B, Jiang Z, Li J . Association of polymorphisms of IL and CD14 genes with acute severe pancreatitis and septic chock. World J Gastroenterol 2005; 11: 4409–4413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Appoloni O, Dupont E, Vandercruys M, Andriens M, Duchateau J, Vincent JL . Association of tumor necrosis factor-2 allele with plasma tumor necrosis factor-alpha levels and mortality from septic shock. Am J Med 2001; 110: 486–488.

    Article  CAS  PubMed  Google Scholar 

  81. Barber RC, Chang LE, Arnoldo BD, Purdue GF, Hunt JL, Horton JW et al. Innate immunity SNPs are associated with risk for severe sepsis after burn injury. Clin Med Res 2006; 4: 250–255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Barber RC, Aragaki CC, Chang LE, Purdue GF, Hunt JL, Arnoldo BD et al. CD14-159 C Allele is associated with increased risk of mortality after burn injury. Shock 2007; 27: 232–237.

    Article  CAS  PubMed  Google Scholar 

  83. Domingo P, Muniz-Diaz E, Baraldes MA, Arilla M, Barquet N, Pericas R et al. Associations between Fc-gamma receptor IIA polymorphisms and the risk and prognosis of meningococcal disease. Am J Med 2002; 112: 19–25.

    Article  CAS  PubMed  Google Scholar 

  84. Flach R, Majetschak M, Heukamp T, Jennissen V, Flhe S, Borgermann J et al. Relation of ex vivo stimulated blood cytokine synthesis to post-traumatic sepsis. Cytokine 2008; 11: 173–178.

    Article  Google Scholar 

  85. Reid CL, Perrey C, Pravica V, Hutchinson IV, Campbell LT . Genetic variation in pro-inflammatory and anti-inflammatory cytokine production in multiple organ dysfunction syndrome. Crit Care Med 2002; 30: 2216–2221.

    Article  CAS  PubMed  Google Scholar 

  86. Schroder O, Schulte KM, Ostermann P, Roher HD, Ekkemkamp A, Laun RA . Heat shock protein 70 genotypes HSPa1B and HSPA1L influence cytokine concentrations and interfere with outcome after injury. Crit Care Med 2003; 31: 73–79.

    Article  PubMed  Google Scholar 

  87. Spolarics Z, Siddiqui M, Siegel JH, Carcia ZC, Stein DS, Ong H et al. Increased incidence of sepsis and altered monocyte functions in severely injured type A-glucose-6-phosphate dehydrogenase deficient African American trauma patients. Crit Care Med 2001; 29: 728–736.

    Article  CAS  PubMed  Google Scholar 

  88. Eisen DP, Dean MM, Thomas P, Marshall P, Gerns N, Heatley S et al. Low mannose-binding lectin function is associated with sepsis in adult patients. FEMS Immunol Med Microbiol 2006; 48: 274–282.

    Article  CAS  PubMed  Google Scholar 

  89. Garcia-Segarra G, Epinosa G, Tassies D, Oreola J, Aibar J, Bove A et al. Increased mortality in septic shock with the 4G/4G genotype of plasminogen activator inhibitor 1 in patients of white descent. Intensive Care Med 2007; 33: 1354–1362.

    Article  CAS  PubMed  Google Scholar 

  90. Jaber BL, Rao M, Guo D, Balakrishnan VS, Perianayagam MC, Freeman RB et al. Cytokine gene promoter polymorphisms and mortality in acute renal failure. Cytokine 2004; 25: 212–219.

    Article  CAS  PubMed  Google Scholar 

  91. Kellum JA, Kong L, Fink MP, Weissfeld LA, Yealy DM, Pinsky MR et al. Understanding the inflammatory cytokine response in pneumonia and sepsis. Arch Inter Med 2008; 167: 1655–1663.

    Article  Google Scholar 

  92. Silva E, Arcaroli J, Svetkauskaite D, Coldren C, Nick JA, pocj K et al. HMGB1 and LPS induce distinct patterns of gene expression and activation in neutrophils from patients with sepsis-induced acute lung injury. Intensive Care Med 2007; 33: 1829–1839.

    Article  CAS  PubMed  Google Scholar 

  93. Menges T, Hermans PWM, Little SG, Langefeld T, Bonig O, Engel J et al. Plasminogen activator inhibitor-1 4G/5G promoter polymorphism and prognosis of severely injured patients. Lancet 2001; 357: 1096–1097.

    Article  CAS  PubMed  Google Scholar 

  94. Saleh M, Viallancourt JP, Graham RK, Huyck M, Srinivasula SM, Alnemri ES et al. Differential modulation of endotoxin responsiveness by human caspase-12 polymorphisms. Nature 2004; 429: 75–79.

    Article  CAS  PubMed  Google Scholar 

  95. Curfman GD, Morrissey S, Drazen JM . Expression of concern: Bombardier et al, ‘Comparison of upper gastrointestinal toxicity of rofecoxib and naproxen in patients with rheumatoid arthritis’ N Engl J Med 2000;343:1520-8. N Engl J Med 2005; 353: 2813–2814.

    Article  CAS  PubMed  Google Scholar 

  96. Green MJ, Boytkin JR . ‘Genetic exceptionalism’ in medicine: clarifying the differences between genetic and non-genetic tests. Ann Inter Med 2003; 138: 571–575.

    Article  Google Scholar 

  97. Lin Z, Owen AB, Altman RB . Genomic research and human subject privacy. Science 2004; 305: 183.

    Article  CAS  PubMed  Google Scholar 

  98. Secretary's Advisory Committee on Genetics, Health, and Society. A roadmap for the integration of genetics and genomics into health and society, 2004, pp 1–62.

  99. Geller G, Botkin JR, Green MJ, Press N, Biesecker BB, Wilfond B et al. Genetic testing for susceptibility to adult-onset cancer: the process and content of informed consent. J Am Med Assoc 1997; 277: 1467–1474.

    Article  CAS  Google Scholar 

  100. Kodish ED . Testing children for cancer genes: the rule of earliest onset. J Pediatrics 1999; 135: 390–395.

    Article  CAS  Google Scholar 

  101. Nelson RM, Botkin JR, Kodish ED, Levetown M, Truman JT, Wilfond BS . Ethical issues with genetic testing in pediatrics. Pediatrics 2001; 107: 1451–1455.

    Article  Google Scholar 

  102. Rothstein MA, Hornung CA . Public attitudes about pharmacogenomics. In: Rothstein MA (ed). Pharmacogenomics: Social, Ethical, and Clinical Dimensions. Wiley-Liss: Hoboken, 2003: 3–27.

    Chapter  Google Scholar 

  103. Lapham EV, Kozma C, Weiss JO . Genetic discrimination: perspectives of consumers. Science 1996; 274: 3015–3021.

    Google Scholar 

  104. Freedman AN, Wideroff L, Olson L, Davis W, Klabunde C, Srinath KP et al. US physicians' attitudes towards testing for cancer susceptibility. Am J Med Genet 2003; 120A: 63–71.

    Article  CAS  PubMed  Google Scholar 

  105. Clayton EW . Ethical, legal, and social implications of genomic medicine. N Engl J Med 2003; 349: 562–569.

    Article  PubMed  Google Scholar 

  106. Lasser KE, Allen PD, Woolhandler SJ, Himmelstein DU, Wolfe SM, Bor DH . Timing of new black box warnings and withdrawals for prescription medications. J Am Med Assoc 2002; 287: 2215–2220.

    Article  Google Scholar 

  107. McWilliams R, Hoover-Fong J, Hamosh A, Beck S, Beaty T, Cutting G . Problematic variation in local institutional review of a multicenter genetic epidemiology study. J Am Med Assoc 2003; 290: 360–366.

    Article  Google Scholar 

  108. Silverman H, Chandros S, Sugarman J . Variability among institutional review boards' decisions within the context of a multicenter trial. Crit Care Med 2001; 29: 235–241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Terwilliger JD, Weiss KM . Linkage disequilibrium mapping of complex disease: fantasy or reality? Curr Opin Biol 1998; 9: 578–594.

    Article  CAS  Google Scholar 

  110. Terwilliger JD, Haghighi F, Hiekkalinna TS, Goring HHH . A biased assessment of the use of SNPs in human complex traits. Curr Opin Genet Develop 2002; 12: 726–734.

    Article  CAS  Google Scholar 

  111. Institute of Medicine. Unequal treatment: confronting racial and ethnic disparities in health care. The National Academies Press: Washington, DC, USA, 2002.

  112. Corbie-Smith G, Thomas SB, St George DMM . Distrust, race and research. Arch Inter Med 2002; 162: 2458–2463.

    Article  Google Scholar 

  113. Murthy VH, Krumhoz HM, Gross CP . Participation in cancer clinical trials. Race-, sex-, and age-based disparities. J Am Med Assoc 2004; 291: 2720–2726.

    Article  CAS  Google Scholar 

  114. Corbie-Smith G, Thomas SB, Williams MV, Moody-Ayers S . Attitudes and beliefs of African Americans toward participation in medical research. J Gen Inter Med 1999; 14: 537–546.

    Article  CAS  Google Scholar 

  115. Shavers VL, Lynch CF, Burmeister LF . Racial differences in factors that influence the willingness to participate in medical research studies. Ann Epidemiol 2005; 12: 248–256.

    Article  Google Scholar 

  116. Simon CM, Kodish ED . Step into my zapatos, doc. Understanding and reducing communication disparities in the multicultural informed consent setting. Perspect Biol Med 2005; 48 (1 (Supplement): S123–S138.

    Article  PubMed  Google Scholar 

  117. Halbert CH, Gandy OH, Collier A, Shaker L . Intentions to participate in genetics research among African American smokers. Cancer Epidemiol Biomarkers Prev 2006; 15: 150–153.

    Article  PubMed  Google Scholar 

  118. McQuillan GM, Porter KS, Agelli M, Kington R . Consent for genetic research in a general population: the NHANES experience. Genet Med 2003; 5: 35–42.

    Article  PubMed  Google Scholar 

  119. Furr LA . Perceptions of genetics research as harmful to society: differences among samples of African Americans and European-Americans. Genet Test 2002; 6: 25–30.

    Article  PubMed  Google Scholar 

  120. Singer E, Antonuuci T, Van Hoewyk J . Similar results were found in a national survey of attitudes about genetic testing in which African Americans also reported significantly greater concerns about the negative consequences of genetic testing compared with Caucasians. Genet Test 2004; 8: 31–43.

    Article  PubMed  Google Scholar 

  121. Thompson HS, Valdimarsdottir HB, Jandorf L, Redd W . Perceived disadvantages and concerns about abuses of genetic testing for cancer risk: differences across African American, Latina and Caucasian women. Patient Educ Couns 2003; 51: 217–227.

    Article  PubMed  Google Scholar 

  122. Hirschhorn JN, Daly MJ . Genome-wide association studies for common diseases and complex traits. Nat Rev Genet 2005; 6: 95–98.

    Article  CAS  PubMed  Google Scholar 

  123. The Wellcome Trust Case Control Consortium. Genome-wide association study of 14 000 cases of seven common disease and 3000 shared controls. Nature 2007; 447: 661–678.

    Article  CAS  PubMed Central  Google Scholar 

  124. Diabetes Genetics Initiative of Broad Institute of Harvard and MIT LUaNIoBR. Genome wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 2007; 316: 1331–1336.

    Article  CAS  Google Scholar 

  125. Zeggini E, Weedon MN, Lindgren CM, Frayling TM, Elliott KS, Lango H et al. Replication of genome-wide association signals in UK samples reveals risk loci for Type 2 diabetes. Science 2007; 316: 1336–1341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. McPherson R, Pertsemlidis A, Kavaslar N, Stewart A, Roberts R, Cox DR et al. A common allele on chromosome 9 associated with coronary heart disease. Science 2007; 316: 1488–1491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ollier W, Sprosen T, Peakman T . UK Biobank: from concept to reality. Pharmacogenomics 2005; 6: 639–646.

    Article  PubMed  Google Scholar 

  128. Roden DM, Pulley JM, Basford MA, Bernard GR, Clayton EW, Balser JR et al. Development of a large-scale de-identified DNA biobank to enable personalize medicine. Clin Pharmacol Ther 2008; 84: 362–369.

    Article  CAS  PubMed  Google Scholar 

  129. McGuire AL, Gibbs RA . No longer de-identified. Science 2006; 312: 370–371.

    Article  CAS  PubMed  Google Scholar 

  130. Helft PR, Champion VL, Eckles R, Johnson CS, Meslin EM . Cancer patients' attitudes toward future research uses of stored human biological materials. J Emp Res Human Res Ethics 2007; 2: 15–22.

    Article  Google Scholar 

  131. Fost N . Can acutely ill patients consent to research? Resolving an ethical dilemma with facts. Acad Emerg Med 1999; 6: 772–774.

    Article  CAS  PubMed  Google Scholar 

  132. Sulmasy DP, Terry PB, Weisman CS, Miller DJ, Stallings RY, Vettese MA et al. The accuracy of substituted judgments in patients with terminal diagnoses. Ann Intern Med 1998; 128: 621–629.

    Article  CAS  PubMed  Google Scholar 

  133. Hare J, Pratt C, Nelson C . Agreement between patients and their self-selected surrogates on difficult medical decisions. Arch Intern Med 1992; 152: 1049–1054.

    Article  CAS  PubMed  Google Scholar 

  134. Seckler AB, Meier DE, Mulvihill M, Paris BE . Substituted judgment: how accurate are the predictions? Ann Intern Med 1991; 115: 92–98.

    Article  CAS  PubMed  Google Scholar 

  135. Sulmasy DP, Haller K, Terry PB . More talk, less paper: predicting the accuracy of substituted judgments. Am J Med 1994; 96: 432–438.

    Article  CAS  PubMed  Google Scholar 

  136. Coppolino M, Ackerson L . Do surrogate decision makers provide accurate consent for intensive care research? Chest 2001; 119: 603–612.

    Article  CAS  PubMed  Google Scholar 

  137. Suhl J, Simons P, Reedy T, Garrick T . Myth of substituted judgment: Surrogate decision making regarding life support is unreliable. Arch Intern Med 1994; 154: 90–96.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported in part by GM080591.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B D Freeman.

Additional information

An abstract based on this article was selected for presentation at the 13th Genetics & Ethics in the 21st century conference, Breckenridge, CO 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freeman, B., Kennedy, C., Frankel, H. et al. Ethical considerations in the collection of genetic data from critically ill patients: What do published studies reveal about potential directions for empirical ethics research?. Pharmacogenomics J 10, 77–85 (2010). https://doi.org/10.1038/tpj.2009.61

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2009.61

Keywords

This article is cited by

Search

Quick links