Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Expression of gemcitabine- and cisplatin-related genes in non-small-cell lung cancer

Abstract

The aim of this study was to investigate the influence of histology and site of analysis (primary tumor versus lymph node) on the expression of genes involved in gemcitabine and cisplatin activity in non-small-cell lung cancer (NSCLC). Excision repair cross-complementing-1 (ERCC1), human equilibrative nucleoside transporter-1 (hENT1), deoxycytidine kinase (dCK), 5′-nucleotidase (5′-NT), cytidine deaminase (CDA) and ribonucleotide-reductase regulatory subunits (RRM1 and RRM2) were analyzed by quantitative-reverse transcription-PCR in 88 microdissected samples from 69 chemonaive patients. The results showed different patterns of expression for all studied genes, suggesting a possible stratification of the patients. No difference was observed between primary tumor and lymph node metastasis, as well as in adenocarcinoma and squamous-cell carcinoma specimens, while we found a correlation between the CDA-A79C polymorphism and gene expression levels. These data suggest a similar genetic susceptibility to gemcitabine–cisplatin regimens for squamous cell and adenocarcinoma and support the use of both lymph node and primary tumor for the expression profiling of NSCLC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T et al. Cancer statistics, 2008. CA Cancer J Clin 2008; 58: 71–96.

    Article  PubMed  Google Scholar 

  2. Schiller JH, Harrington D, Belani CP, Langer C, Sandler A, Krook J et al. Comparison of four chemotherapy regimens for advanced non-small cell lung cancer. N Engl J Med 2002; 346: 92–98.

    Article  CAS  PubMed  Google Scholar 

  3. Rosell R, Cobo M, Isla D, Camps C, Massuti B . Pharmacogenomics and gemcitabine. Ann Oncol 2006; 17 (Suppl 5): v13–v16.

    Article  PubMed  Google Scholar 

  4. Wachters FM, Wong LS, Timens W, Kampinga HH, Groen HJ . ERCC1, hRad51, and BRCA1 protein expression in relation to tumour response and survival of stage III/IV NSCLC patients treated with chemotherapy. Lung Cancer 2005; 50: 211–219.

    Article  CAS  PubMed  Google Scholar 

  5. Shimizu J, Horio Y, Osada H, Hida T, Hasegawa Y, Shimokata K et al. mRNA expression of RRM1, ERCC1 and ERCC2 is not associated with chemosensitivity to cisplatin, carboplatin and gemcitabine in human lung cancer cell lines. Respirology 2008; 13: 510–517.

    Article  PubMed  Google Scholar 

  6. Evans WE, McLeod HL . Pharmacogenomics--drug disposition, drug targets, and side effects. N Engl J Med 2003; 348: 538–549.

    Article  CAS  PubMed  Google Scholar 

  7. Danesi R, de Braud F, Fogli S, de Pas TM, Di Paolo A, Curigliano G et al. Pharmacogenetics of anticancer drug sensitivity in non-small cell lung cancer. Pharmacol Rev 2003; 55: 57–103.

    Article  CAS  PubMed  Google Scholar 

  8. Mackey JR, Mani RS, Selner M, Mowles D, Young JD, Belt JA et al. Functional nucleoside transporters are required for gemcitabine influx and manifestation of toxicity in cancer cell lines. Cancer Res 1998; 58: 4349–4357.

    CAS  PubMed  Google Scholar 

  9. Achiwa H, Oguri T, Sato S, Maeda H, Niimi T, Ueda R . Determinants of sensitivity and resistance to gemcitabine: the roles of human equilibrative nucleoside transporter 1 and deoxycytidine kinase in non-small cell lung cancer. Cancer Sci 2004; 95: 753–775.

    Article  CAS  PubMed  Google Scholar 

  10. Giovannetti E, Del Tacca M, Mey V, Funel N, Nannizzi S, Ricci S et al. Transcription analysis of human equilibrative nucleoside transporter-1 predicts survival in pancreas cancer patients treated with gemcitabine. Cancer Res 2006; 66: 3928–3935.

    Article  CAS  PubMed  Google Scholar 

  11. Marce S, Molina-Arcas M, Villamor N, Casado FJ, Campo E, Pastor-Anglada M et al. Expression of human equilibrative nucleoside transporter 1 (hENT1) and its correlation with gemcitabine uptake and cytotoxicity in mantle cell lymphoma. Haematologica 2006; 91: 895–902.

    CAS  PubMed  Google Scholar 

  12. Peters GJ, van der Wilt CL, van Moorsel CJ, Kroep JR, Bergman AM, Ackland SP . Basis for effective combination cancer chemotherapy with antimetabolites. Pharmacol Ther 2000; 87: 227–253.

    Article  CAS  PubMed  Google Scholar 

  13. van Bree C, Castro Kreder N, Loves WJ, Franken NA, Peters GJ, Haveman J . Sensitivity to ionizing radiation and chemotherapeutic agents in gemcitabine-resistant human tumor cell lines. Int J Radiat Oncol Biol Phys 2002; 54: 237–244.

    Article  CAS  PubMed  Google Scholar 

  14. Kroep JR, Loves WJ, van der Wilt CL, Alvarez E, Talianidis I, Boven E et al. Pretreatment deoxycytidine kinase levels predict in vivo gemcitabine sensitivity. Mol Cancer Ther 2002; 1: 371–376.

    CAS  PubMed  Google Scholar 

  15. Galmarini CM, Mackey JR, Dumontet C . Nucleoside analogues: mechanisms of drug resistance and reversal strategies. Leukemia 2001; 15: 875–890.

    Article  CAS  Google Scholar 

  16. Seve P, Mackey JR, Isaac S, Tredan O, Souquet PJ, Perol M et al. cN-II expression predicts survival in patients receiving gemcitabine for advanced non-small cell lung cancer. Lung Cancer 2005; 49: 363–370.

    Article  PubMed  Google Scholar 

  17. Kirch H-C, Schroder J, Hoppe H, Esche H, Seeber S, Schütte J . Recombinant gene products of two natural variants of the human cytidine deaminase gene confer different deamination rates of cytarabine in vitro. Exp Hematol 1998; 26: 421–425.

    CAS  PubMed  Google Scholar 

  18. Danesi R, Altavilla G, Giovannetti E, Rosell R . Pharmacogenomics of gemcitabine in non-small-cell lung cancer and other solid tumors. Pharmacogenomics 2009; 10: 69–80.

    Article  CAS  PubMed  Google Scholar 

  19. Tibaldi C, Giovannetti E, Vasile E, Mey V, Laan AC, Nannizzi S et al. Correlation of CDA, ERCC1, and XPD polymorphisms with response and survival in gemcitabine/cisplatin-treated advanced non-small cell lung cancer patients. Clin Cancer Res 2008; 14: 1797–1803.

    Article  CAS  PubMed  Google Scholar 

  20. Bergman AM, Eijk PP, Ruiz van Haperen VW, Smid K, Veerman G, Hubeek I et al. In vivo induction of resistance to gemcitabine results in increased expression of ribonucleotide reductase subunit M1 as the major determinant. Cancer Res 2005; 65: 9510–9516.

    Article  CAS  PubMed  Google Scholar 

  21. Goan YG, Zhou B, Hu E, Mi S, Yen Y . Overexpression of ribonucleotide reductase as a mechanism of resistance to 2,2-difluorodeoxycytidine in the human KB cancer cell line. Cancer Res 1999; 59: 4204–4207.

    CAS  PubMed  Google Scholar 

  22. Davidson JD, Ma L, Flagella M, Geeganage S, Gelbert LM, Slapak CA . An increase in the expression of ribonucleotide reductase large subunit 1 is associated with gemcitabine resistance in non-small cell lung cancer cell lines. Cancer Res 2004; 64: 3761–3766.

    Article  CAS  PubMed  Google Scholar 

  23. Rosell R, Felip E, Taron M, Majo J, Mendez P, Sanchez-Ronco M et al. Gene expression as a predictive marker of outcome in stage IIB-IIIA-IIIB non-small cell lung cancer after induction gemcitabine-based chemotherapy followed by resectional surgery. Clin Cancer Res 2004; 10: 4215s–4219s.

    Article  CAS  PubMed  Google Scholar 

  24. Bepler G, Kusmartseva I, Sharma S, Gautam A, Cantor A, Sharma A et al. RRM1 modulated in vitro and in vivo efficacy of gemcitabine and platinum in non-small-cell lung cancer. J Clin Oncol 2006; 24: 4731–4737.

    Article  CAS  PubMed  Google Scholar 

  25. Zheng Z, Chen T, Xueli L, Haura E, Sharma A, Bepler G . DNA synthesis and repair genes RRM1 and ERCC1 in lung cancer. N Engl J Med 2007; 356: 800–808.

    Article  CAS  PubMed  Google Scholar 

  26. Bepler G, Zheng Z, Gautam A, Sharma S, Cantor A, Sharma A et al. Ribonucleotide reductase M1 gene promoter activity, polymorphisms, population frequencies, and clinical relevance. Lung Cancer 2005; 47: 183–192.

    Article  PubMed  Google Scholar 

  27. Kim SO, Jeong JY, Kim MR, Cho HJ, Ju JY, Kwon YS et al. Efficacy of gemcitabine in patients with non-small cell lung cancer according to promoter polymorphisms of the ribonucleotide reductase M1 gene. Clin Cancer Res 2008; 14: 3083–3088.

    Article  CAS  PubMed  Google Scholar 

  28. Kwon WS, Rha SY, Choi YH, Lee JO, Park KH, Jung JJ et al. Ribonucleotide reductase M1 (RRM1) 2464G>A polymorphism shows an association with gemcitabine chemosensitivity in cancer cell lines. Pharmacogenet Genomics 2006; 16: 429–438.

    Article  CAS  PubMed  Google Scholar 

  29. Rha SY, Jeung HC, Choi YH, Yang WI, Yoo JH, Kim BS et al. An association between RRM1 haplotype and gemcitabine-induced neutropenia in breast cancer patients. Oncologist 2007; 12: 622–630.

    Article  CAS  PubMed  Google Scholar 

  30. Sancar A . DNA repair in humans. Annu Rev Genet 1995; 29: 69–105.

    Article  CAS  PubMed  Google Scholar 

  31. Zeng-Rong N, Paterson J, Alpert L, Tsao MS, Viallet J, Alaoui-Jamali MA . Elevated DNA repair capacity is associated with intrinsic resistance of lung cancer to chemotherapy. Cancer Res 1995; 55: 4760–4764.

    CAS  PubMed  Google Scholar 

  32. Lord RV, Brabender J, Gandara D, Alberola V, Camps C, Domine M et al. Low ERCC1 expression correlates with prolonged survival after cisplatin plus gemcitabine chemotherapy in non-small cell lung cancer. Clin Cancer Res 2002; 8: 2286–2291.

    CAS  PubMed  Google Scholar 

  33. Ceppi P, Volante M, Novello S, Rapa I, Danenberg KD, Danenberg PV et al. ERCC1 and RRM1 gene expressions but not EGFR are predictive of shorter survival in advanced non-small-cell lung cancer treated with cisplatin and gemcitabine. Ann Oncol 2006; 17: 1818–1825.

    Article  CAS  PubMed  Google Scholar 

  34. Olaussen KA, Dunant A, Fouret P, Brambilla E, Andre F, Haddad V et al. DNA repair by ERCC1 in non-small-cell lung cancer and cisplatin-based adjuvant chemotherapy. N Engl J Med 2006; 355: 983–991.

    Article  CAS  PubMed  Google Scholar 

  35. Miller VA, Kris MG, Shah N, Patel J, Azzoli C, Gomez J et al. Bronchioloalveolar pathologic subtype and smoking history predict sensitivity to gefitinib in advanced non-small-cell lung cancer. J Clin Oncol 2004; 22: 1103–1109.

    Article  CAS  PubMed  Google Scholar 

  36. Sandler A, Gray R, Perry MC, Brahmer J, Schiller JH, Dowlati A et al. Paclitaxel–carboplatin alone or with bevacizumab for non–small-cell lung cancer. N Engl J Med 2006; 355: 2542–2550.

    Article  CAS  PubMed  Google Scholar 

  37. Scagliotti GV, Parikh P, von Pawel J, Biesma B, Vansteenkiste J, Manegold C et al. Phase III study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naïve patients with advanced-stage non-small-cell lung cancer. J Clin Oncol 2008; 26: 3543–3551.

    Article  CAS  PubMed  Google Scholar 

  38. Scagliotti G, Hanna N, Fossella F, Sugarman K, Blatter J, Peterson P et al. The differential efficacy of pemetrexed according to NSCLC histology: a review of two Phase III studies. Oncologist 2009; 14: 253–263.

    Article  CAS  PubMed  Google Scholar 

  39. Giovannetti E, Mey V, Nannizzi S, Pasqualetti G, Marini L, Del Tacca M et al. Cellular and pharmacogenetics foundation of synergistic interaction of pemetrexed and gemcitabine in human non-small-cell lung cancer cells. Mol Pharmacol 2005; 68: 110–118.

    CAS  PubMed  Google Scholar 

  40. Ceppi P, Volante M, Saviozzi S, Rapa I, Novello S, Cambieri A et al. Squamous cell carcinoma of the lung compared with other histotypes shows higher messenger RNA and protein levels for thymidylate synthase. Cancer 2006; 107: 1589–1596.

    Article  CAS  PubMed  Google Scholar 

  41. Hirsch FR, Spreafico A, Novello S, Wood MD, Simms L, Papotti M . The prognostic and predictive role of histology in advanced non-small cell lung cancer: a literature review. J Thorac Oncol 2008; 3: 1468–1481.

    Article  PubMed  Google Scholar 

  42. Pennycooke M, Chaudary N, Shuralyova I, Zhang Y, Coe IR . Differential expression of human nucleoside transporters in normal and tumor tissue. Biochem Biophys Res Commun 2001; 280: 951–959.

    Article  CAS  PubMed  Google Scholar 

  43. Burgermeister R . New aspects of laser microdissection in research and routine. J Histochem Cytochem 2005; 53: 409–412.

    Article  Google Scholar 

  44. Ohhashi S, Ohuchida K, Mizumoto K, Fujita H, Egami T, Yu J et al. Down-regulation of deoxycytidine kinase enhances acquired resistance to gemcitabine in pancreatic cancer. Anticancer Res 2008; 28: 2205–2212.

    CAS  PubMed  Google Scholar 

  45. Oguri T, Achiwa H, Sato S, Bessho Y, Takano Y, Miyazaki M et al. The determinants of sensitivity and acquired resistance to gemcitabine differ in non-small cell lung cancer: a role of ABCC5 in gemcitabine sensitivity. Mol Cancer Ther 2006; 5: 1800–1806.

    Article  CAS  PubMed  Google Scholar 

  46. Ganti AK, Parr A, Nguyen D, Grem JL . Gene expression profile of enzymes involved in gemcitabine (Gem) metabolism in bone marrow mononuclear cells as predictors of myelosuppression. Proc Am Soc Clin Oncol 2006; 24: 2007a.

    Google Scholar 

  47. Bengala C, Guarneri V, Giovannetti E, Lencioni M, Fontana E, Mey V et al. Prolonged fixed dose rate infusion of gemcitabine with autologous haemopoietic support in advanced pancreatic adenocarcinoma. Br J Cancer 2005; 93: 35–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Giovannetti E, Laan AC, Vasile E, Tibaldi C, Nannizzi S, Ricciardi S et al. Correlation between cytidine deaminase genotype and gemcitabine deamination in blood samples. Nucleosides Nucleotides Nucleic Acids 2008; 27: 720–725.

    Article  CAS  PubMed  Google Scholar 

  49. Gilbert JA, Salavaggione OE, Ji Y, Pelleymounter LL, Eckloff BW, Wieben ED et al. Gemcitabine pharmacogenomics: cytidine deaminase and deoxycytidylate deaminase gene resequencing and functional genomics. Clin Cancer Res 2006; 12: 1794–1803.

    Article  CAS  PubMed  Google Scholar 

  50. Sugiyama E, Kaniwa N, Kim SR, Kikura-Hanajiri R, Hasegawa R, Maekawa K et al. Pharmacokinetics of gemcitabine in Japanese cancer patients: the impact of a cytidine deaminase polymorphism. J Clin Oncol 2007; 25: 32–41.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

F De Braud was supported by unrestricted research grants from Eli-Lilly Italia (Sesto Fiorentino, Firenze, Italy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Toffalorio.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toffalorio, F., Giovannetti, E., De Pas, T. et al. Expression of gemcitabine- and cisplatin-related genes in non-small-cell lung cancer. Pharmacogenomics J 10, 180–190 (2010). https://doi.org/10.1038/tpj.2009.53

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2009.53

Keywords

This article is cited by

Search

Quick links