Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Unfolding of a ClC chloride transporter retains memory of its evolutionary history

Abstract

ClC chloride channels and transporters are important for chloride homeostasis in species from bacteria to human. Mutations in ClC proteins cause genetically inherited diseases, some of which are likely to involve folding defects. The ClC proteins present a challenging and unusual biological folding problem because they are large membrane proteins possessing a complex architecture, with many reentrant helices that go only partway through membrane and loop back out. Here we were able to examine the unfolding of the Escherichia coli ClC transporter, ClC-ec1, using single-molecule forced unfolding methods. We found that the protein could be separated into two stable halves that unfolded independently. The independence of the two domains is consistent with an evolutionary model in which the two halves arose from independently folding subunits that later fused together. Maintaining smaller folding domains of lesser complexity within large membrane proteins may be an advantageous strategy to avoid misfolding traps.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ClC-ec1 structure and single-molecule forced unfolding experiments.
Fig. 2: Separate unfolding of N- and C-terminal domains.
Fig. 3: A longer linker between domains increases the size of the pretransition.
Fig. 4: Characterization of the isolated N- and C-terminal domains.
Fig. 5: Molecular dynamics simulations and vesicle swelling assay.
Fig. 6: Stable off-pathway misfolded states.

Similar content being viewed by others

References

  1. Miller, C. Open-state substructure of single chloride channels from Torpedo electroplax. Phil. Trans. R. Soc. Lond. B 299, 401–411 (1982).

    Article  CAS  Google Scholar 

  2. Accardi, A. & Miller, C. Secondary active transport mediated by a prokaryotic homologue of ClC Cl channels. Nature 427, 803–807 (2004).

    Article  CAS  Google Scholar 

  3. Pusch, M. et al. Mechanisms of block of muscle type CLC chloride channels (Review). Mol. Membr. Biol. 19, 285–292 (2002).

    Article  CAS  Google Scholar 

  4. Gouaux, E. & Mackinnon, R. Principles of selective ion transport in channels and pumps. Science 310, 1461–1465 (2005).

    Article  CAS  Google Scholar 

  5. Chen, T. Y. Structure and function of CLC channels. Annu. Rev. Physiol. 67, 809–839 (2005).

    Article  CAS  Google Scholar 

  6. Miller, C. ClC chloride channels viewed through a transporter lens. Nature 440, 484–489 (2006).

    Article  CAS  Google Scholar 

  7. Dutzler, R. A structural perspective on ClC channel and transporter function. FEBS Lett. 581, 2839–2844 (2007).

    Article  CAS  Google Scholar 

  8. Jentsch, T. J. CLC chloride channels and transporters: from genes to protein structure, pathology and physiology. Crit. Rev. Biochem. Mol. Biol. 43, 3–36 (2008).

    Article  CAS  Google Scholar 

  9. Stölting, G., Fischer, M. & Fahlke, C. CLC channel function and dysfunction in health and disease. Front. Physiol. 5, 378 (2014).

    Google Scholar 

  10. Accardi, A. Structure and gating of CLC channels and exchangers. J. Physiol. (Lond.) 593, 4129–4138 (2015).

    Article  CAS  Google Scholar 

  11. Ludwig, M. et al. Functional evaluation of Dent’s disease-causing mutations: implications for ClC-5 channel trafficking and internalization. Hum. Genet. 117, 228–237 (2005).

    Article  Google Scholar 

  12. Peng, Y. J. et al. Regulation of CLC-1 chloride channel biosynthesis by FKBP8 and Hsp90β. Sci. Rep. 6, 32444–32458 (2016).

    Article  CAS  Google Scholar 

  13. Robertson, J. L., Kolmakova-Partensky, L. & Miller, C. Design, function and structure of a monomeric ClC transporter. Nature 468, 844–847 (2010).

    Article  CAS  Google Scholar 

  14. Chadda, R. et al. The dimerization equilibrium of a ClC Cl/H+ antiporter in lipid bilayers. Elife 5, e17438 (2016).

    Article  Google Scholar 

  15. Mindell, J. A., Maduke, M., Miller, C. & Grigorieff, N. Projection structure of a ClC-type chloride channel at 6.5 Å resolution. Nature 409, 219–223 (2001).

    Article  CAS  Google Scholar 

  16. Dutzler, R., Campbell, E. B., Cadene, M., Chait, B. T. & MacKinnon, R. X-ray structure of a ClC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity. Nature 415, 287–294 (2002).

    Article  CAS  Google Scholar 

  17. Dutzler, R., Campbell, E. B. & MacKinnon, R. Gating the selectivity filter in ClC chloride channels. Science 300, 108–112 (2003).

    Article  CAS  Google Scholar 

  18. Park, E., Campbell, E. B. & MacKinnon, R. Structure of a CLC chloride ion channel by cryo-electron microscopy. Nature 541, 500–505 (2017).

    Article  CAS  Google Scholar 

  19. von Heijne, G. Membrane-protein topology. Nat. Rev. Mol. Cell Biol. 7, 909–918 (2006).

    Article  Google Scholar 

  20. Bowie, J. U. Flip-flopping membrane proteins. Nat. Struct. Mol. Biol. 13, 94–96 (2006).

    Article  CAS  Google Scholar 

  21. Forrest, L. R. Structural symmetry in membrane proteins. Annu. Rev. Biophys. 44, 311–337 (2015).

    Article  CAS  Google Scholar 

  22. Bowie, J. U. Membrane protein twists and turns. Science 339, 398–399 (2013).

    Article  CAS  Google Scholar 

  23. Oesterhelt, F. et al. Unfolding pathways of individual bacteriorhodopsins. Science 288, 143–146 (2000).

    Article  CAS  Google Scholar 

  24. Kedrov, A., Janovjak, H., Sapra, K. T. & Müller, D. J. Deciphering molecular interactions of native membrane proteins by single-molecule force spectroscopy. Annu. Rev. Biophys. Biomol. Struct. 36, 233–260 (2007).

    Article  CAS  Google Scholar 

  25. Zocher, M. et al. Single-molecule force spectroscopy from nanodiscs: an assay to quantify folding, stability, and interactions of native membrane proteins. ACS Nano 6, 961–971 (2012).

    Article  CAS  Google Scholar 

  26. Serdiuk, T. et al. YidC assists the stepwise and stochastic folding of membrane proteins. Nat. Chem. Biol. 12, 911–917 (2016).

    Article  CAS  Google Scholar 

  27. Popot, J. L. & Engelman, D. M. Helical membrane protein folding, stability, and evolution. Annu. Rev. Biochem. 69, 881–922 (2000).

    Article  CAS  Google Scholar 

  28. Engelman, D. M. et al. Membrane protein folding: beyond the two stage model. FEBS Lett. 555, 122–125 (2003).

    Article  CAS  Google Scholar 

  29. Bowie, J. U. Solving the membrane protein folding problem. Nature 438, 581–589 (2005).

    Article  CAS  Google Scholar 

  30. Kim, K. & Saleh, O. A. A high-resolution magnetic tweezer for single-molecule measurements. Nucleic Acids Res. 37, e136 (2009).

    Article  Google Scholar 

  31. Ding, F. et al. Single-molecule mechanical identification and sequencing. Nat. Methods 9, 367–372 (2012).

    Article  CAS  Google Scholar 

  32. De Vlaminck, I. & Dekker, C. Recent advances in magnetic tweezers. Annu. Rev. Biophys. 41, 453–472 (2012).

    Article  Google Scholar 

  33. Min, D. et al. Mechanical unzipping and rezipping of a single SNARE complex reveals hysteresis as a force-generating mechanism. Nat. Commun. 4, 1705 (2013).

    Article  Google Scholar 

  34. Kemmerich, F. E. et al. Simultaneous single-molecule force and fluorescence sampling of DNA nanostructure conformations using magnetic tweezers. Nano Lett. 16, 381–386 (2016).

    Article  CAS  Google Scholar 

  35. Berghuis, B. A., Köber, M., van Laar, T. & Dekker, N. H. High-throughput, high-force probing of DNA-protein interactions with magnetic tweezers. Methods 105, 90–98 (2016).

    Article  CAS  Google Scholar 

  36. Min, D., Jefferson, R. E., Bowie, J. U. & Yoon, T. Y. Mapping the energy landscape for second-stage folding of a single membrane protein. Nat. Chem. Biol. 11, 981–987 (2015).

    Article  CAS  Google Scholar 

  37. Min, D., Arbing, M. A., Jefferson, R. E. & Bowie, J. U. A simple DNA handle attachment method for single molecule mechanical manipulation experiments. Protein Sci. 25, 1535–1544 (2016).

    Article  CAS  Google Scholar 

  38. Jefferson, R. E., Min, D., Corin, K., Wang, J. Y. & Bowie, J. U. Applications of single-molecule methods to membrane protein folding studies. J. Mol. Biol. 430, 424–437 (2018).

    Article  CAS  Google Scholar 

  39. Zakeri, B. et al. Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. Proc. Natl Acad. Sci. USA 109, E690–E697 (2012).

    Article  CAS  Google Scholar 

  40. Faham, S. & Bowie, J. U. Bicelle crystallization: a new method for crystallizing membrane proteins yields a monomeric bacteriorhodopsin structure. J. Mol. Biol. 316, 1–6 (2002).

    Article  CAS  Google Scholar 

  41. Strick, T. R., Allemand, J. F., Bensimon, D., Bensimon, A. & Croquette, V. The elasticity of a single supercoiled DNA molecule. Science 271, 1835–1837 (1996).

    Article  CAS  Google Scholar 

  42. Gosse, C. & Croquette, V. Magnetic tweezers: micromanipulation and force measurement at the molecular level. Biophys. J. 82, 3314–3329 (2002).

    Article  CAS  Google Scholar 

  43. Ribeck, N. & Saleh, O. A. Multiplexed single-molecule measurements with magnetic tweezers. Rev. Sci. Instrum. 79, 094301–094306 (2008).

    Article  Google Scholar 

  44. Hanggi, P., Talkner, P. & Borkovec, M. Reaction-rate theory — 50 years after Kramers. Rev. Mod. Phys. 62, 251–341 (1990).

    Article  Google Scholar 

  45. Huang, J. & MacKerell, A. D. Jr. CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. J. Comput. Chem. 34, 2135–2145 (2013).

    Article  CAS  Google Scholar 

  46. Zhu, L., Kaback, H. R. & Dalbey, R. E. YidC protein, a molecular chaperone for LacY protein folding via the SecYEG protein machinery. J. Biol. Chem. 288, 28180–28194 (2013).

    Article  CAS  Google Scholar 

  47. Kumazaki, K. et al. Crystal structure of Escherichia coli YidC, a membrane protein chaperone and insertase. Sci. Rep. 4, 7299 (2014).

    Article  CAS  Google Scholar 

  48. Dill, K. A. Theory for the folding and stability of globular proteins. Biochemistry 24, 1501–1509 (1985).

    Article  CAS  Google Scholar 

  49. Shen, M. Y., Davis, F. P. & Sali, A. The optimal size of a globular protein domain: a simple sphere-packing model. Chem. Phys. Lett. 405, 224–228 (2005).

    Article  CAS  Google Scholar 

  50. Paslawski, W. et al. Cooperative folding of a polytopic α-helical membrane protein involves a compact N-terminal nucleus and nonnative loops. Proc. Natl Acad. Sci. USA 112, 7978–7983 (2015).

    Article  CAS  Google Scholar 

  51. Jefferson, R. E., Blois, T. M. & Bowie, J. U. Membrane proteins can have high kinetic stability. J. Am. Chem. Soc. 135, 15183–15190 (2013).

    Article  CAS  Google Scholar 

  52. Blommel, P. G. & Fox, B. G. A combined approach to improving large-scale production of tobacco etch virus protease. Protein Expr. Purif. 55, 53–68 (2007).

    Article  CAS  Google Scholar 

  53. Sreerama, N. & Woody, R. W. On the analysis of membrane protein circular dichroism spectra. Protein Sci. 13, 100–112 (2004).

    Article  CAS  Google Scholar 

  54. Wu, E. L. et al. CHARMM-GUI Membrane Builder toward realistic biological membrane simulations. J. Comput. Chem. 35, 1997–2004 (2014).

    Article  CAS  Google Scholar 

  55. Steinbach, P. J. & Brooks, B. R. New spherical-cutoff methods for long-range forces in macromolecular simulation. J. Comput. Chem. 15, 667–683 (1994).

    Article  CAS  Google Scholar 

  56. Essmann, U. et al. A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577–8593 (1995).

    Article  CAS  Google Scholar 

  57. Feller, S. E., Zhang, Y. H., Pastor, R. W. & Brooks, B. R. Constant-pressure molecular-dynamics simulation — the Langevin piston method. J. Chem. Phys. 103, 4613–4621 (1995).

    Article  CAS  Google Scholar 

  58. Shaw, D. E. et al. Anton 2: Raising the bar for performance and programmability in a special-purpose molecular dynamics supercomputer. Sc14: Intl. Conf. High Performance Computing, Networking, Storage and Analysis 41–53 (2014).

  59. Lippert, R. A. et al. Accurate and efficient integration for molecular dynamics simulations at constant temperature and pressure. J. Chem. Phys. 139, 164106–164116 (2013).

    Article  Google Scholar 

  60. Hess, H. H. & Derr, J. E. Assay of inorganic and organic phosphorus in the 0.1–5 nanomole range. Anal. Biochem. 63, 607–613 (1975).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (R01GM063919 to J.U.B. and U54GM087519 to W.I.), the National Science Foundation (MCB-1727508 to W.I.), and the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education (NRF-2016R1A6A3A03007871 to D.M.). We thank J. L. Robertson at the University of Iowa for sending a plasmid template containing a monomeric ClC-ec1 gene and the members of our lab for comments on the manuscript. Anton 2 computer time was provided by the Pittsburgh Supercomputing Center (PSC) through grant R01GM116961 from the National Institutes of Health. The Anton 2 machine at PSC was generously made available by D. E. Shaw Research.

Author information

Authors and Affiliations

Authors

Contributions

D.M., R.E.J. and J.U.B. conceived and designed the experiments. Y.Q. and W.I. designed and performed molecular dynamics simulations. D.M., R.E.J., J.Y.W. and M.A.A. performed plasmid cloning and protein purification. D.M. performed DNA handle conjugation and single-molecule forced unfolding experiments. R.E.J. performed the domain isolation, SEC, CD and vesicle swelling experiments. D.M., R.E.J. and J.U.B. analyzed the experimental data. Y.Q., W.I., D.M. and J.U.B. analyzed the molecular dynamics simulations. D.M., R.E.J., Y.Q., W.I. and J.U.B. wrote the paper.

Corresponding author

Correspondence to James U. Bowie.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Table 1 and Supplementary Figure 1–10

Life Sciences Reporting Summary

Supplementary Video 1

Supplementary Video 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Min, D., Jefferson, R.E., Qi, Y. et al. Unfolding of a ClC chloride transporter retains memory of its evolutionary history. Nat Chem Biol 14, 489–496 (2018). https://doi.org/10.1038/s41589-018-0025-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-018-0025-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing