Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

From compulsivity to compulsion: the neural basis of compulsive disorders

Abstract

Compulsive behaviour, an apparently irrational perseveration in often maladaptive acts, is a potential transdiagnostic symptom of several neuropsychiatric disorders, including obsessive-compulsive disorder and addiction, and may reflect the severe manifestation of a dimensional trait termed compulsivity. In this Review, we examine the psychological basis of compulsions and compulsivity and their underlying neural circuitry using evidence from human neuroimaging and animal models. Several main elements of this circuitry are identified, focused on fronto-striatal systems implicated in goal-directed behaviour and habits. These systems include the orbitofrontal, prefrontal, anterior cingulate and insular cortices and their connections with the basal ganglia as well as sensoriomotor and parietal cortices and cerebellum. We also consider the implications for future classification of impulsive–compulsive disorders and their treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Behavioural models of perseverative and compulsive behaviour.
Fig. 2: Neural systems of compulsive behaviour: insights from cognitive neuroscience.
Fig. 3: Human neuroimaging and compulsion.
Fig. 4: Neural circuits of compulsive behaviour: insights from animal models.
Fig. 5: The anatomy of a compulsive action: a theoretical model of the psychological underpinnings of compulsive disorders.

Similar content being viewed by others

References

  1. Esquirol, E. Treatise on Insanity, Translation from French (Lean and Blanchard, 1845).

  2. Luigjes, J. et al. Defining compulsive behavior. Neuropsychol. Rev. 29, 4–13 (2019). A detailed critique of the compulsivity construct, taking into account several operational definitions, and unusually highlighting and integrating its subjective, behavioural and maladaptive components.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Stein, D. J. et al. Obsessive-compulsive disorder: diagnostic and treatment issues. Psychiatr. Clin. North Am. 32, 665–685 (2009).

    Article  PubMed  Google Scholar 

  4. APA. The Diagnostic and Statistical Manual of Mental Disorders: DSM 5 (APA, 2013).

  5. Genetti Gatfield, M., Peron, J., Medlin, F., Annoni, J. M. & Accolla, E. A. Compulsions without obsession following stroke. Neuropsychologia 162, 108050 (2021).

    Article  PubMed  Google Scholar 

  6. Mitchell, E., Tavares, T. P., Palaniyappan, L. & Finger, E. C. Hoarding and obsessive-compulsive behaviours in frontotemporal dementia: clinical and neuroanatomic associations. Cortex 121, 443–453 (2019).

    Article  PubMed  Google Scholar 

  7. Bostwick, J. M., Hecksel, K. A., Stevens, S. R., Bower, J. H. & Ahlskog, J. E. Frequency of new-onset pathologic compulsive gambling or hypersexuality after drug treatment of idiopathic Parkinson disease. Mayo Clin. Proc. 84, 310–316 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Djamshidian, A., Averbeck, B. B., Lees, A. J. & O’Sullivan, S. S. Clinical aspects of impulsive compulsive behaviours in Parkinson’s disease. J. Neurol. Sci. 310, 183–188 (2011).

    Article  PubMed  Google Scholar 

  9. Tiego, J. et al. Measuring compulsivity as a self-reported multidimensional transdiagnostic construct: large-scale (N = 182,000) validation of the Cambridge–Chicago compulsivity trait scale. Assessment 30, 2433–2448 (2023).

    Article  PubMed  Google Scholar 

  10. Chamberlain, S. R. & Grant, J. E. Initial validation of a transdiagnostic compulsivity questionnaire: the Cambridge–Chicago Compulsivity Trait Scale. CNS Spectr. 23, 340–346 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Robbins, T. W., Gillan, C. M., Smith, D. G., de Wit, S. & Ersche, K. D. Neurocognitive endophenotypes of impulsivity and compulsivity: towards dimensional psychiatry. Trends Cogn. Sci. 16, 81–91 (2012).

    Article  PubMed  Google Scholar 

  12. Khalsa, S. S. et al. Interoception and mental health: a roadmap. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 3, 501–513 (2018).

    PubMed  Google Scholar 

  13. Koob, G. F. Anhedonia, hyperkatifeia, and negative reinforcement in substance use disorders. Curr. Top. Behav. Neurosci. 58, 147–165 (2022).

    Article  PubMed  Google Scholar 

  14. Koob, G. F., Powell, P. & White, A. Addiction as a coping response: hyperkatifeia, deaths of despair, and COVID-19. Am. J. Psychiatry 177, 1031–1037 (2020). A classic application and extension of the negative reinforcement principle to compulsive behaviour in drug addiction, focusing on the role of the negative affective state in alcohol and opioid drug use disorders.

    Article  PubMed  Google Scholar 

  15. Stein, D. J. et al. Obsessive-compulsive disorder. Nat. Rev. Dis. Primers https://doi.org/10.1038/s41572-019-0102-3 (2019).

  16. Tiffany, S. T. & Carter, B. L. Is craving the source of compulsive drug use? J. Psychopharmacol. 12, 23–30 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Guillen-Font, M. A. et al. Insight in obsessive-compulsive disorder: relationship with sociodemographic and clinical characteristics. J. Psychiatr. Pract. 27, 427–438 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cervin, M. et al. Towards a definitive symptom structure of obsessive-compulsive disorder: a factor and network analysis of 87 distinct symptoms in 1366 individuals. Psychol. Med. 52, 3267–3279 (2022).

    Article  PubMed  Google Scholar 

  19. Andrews-McClymont, J. G., Lilienfeld, S. O. & Duke, M. P. Evaluating an animal model of compulsive hoarding in humans. Rev. Gen. Psychol. 17, 399–419 (2013).

    Article  Google Scholar 

  20. Volkow, N. D., Wang, G. J., Fowler, J. S., Tomasi, D. & Baler, R. Food and drug reward: overlapping circuits in human obesity and addiction. Curr. Top. Behav. Neurosci. 11, 1–24 (2012).

    CAS  PubMed  Google Scholar 

  21. Velazquez-Sanchez, C. et al. High trait impulsivity predicts food addiction-like behavior in the rat. Neuropsychopharmacology 39, 2463–2472 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Godier, L. R. & Park, R. J. Does compulsive behavior in anorexia nervosa resemble an addiction? A qualitative investigation. Front. Psychol. 6, 1608 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  23. D’Angelo, L.-S. et al. Animal models of obsessive-compulsive spectrum disorders. CNS Spectr. 19, 28–49 (2014).

    Article  Google Scholar 

  24. Brett, L. P. & Levine, S. Schedule-induced polydipsia suppresses pituitary-adrenal activity in rats. J. Comp. Physiol. Psychol. 93, 946–956 (1979).

    Article  CAS  PubMed  Google Scholar 

  25. Falk, J. Production of polydipsia in normal rats by an intermittent food schedule. Science 133, 195–196 (1961).

    Article  CAS  PubMed  Google Scholar 

  26. Dundas, B., Harris, M. & Narasimhan, M. Psychogenic polydipsia review: etiology, differential, and treatment. Curr. Psychiatry Rep. 9, 236–241 (2007).

    Article  PubMed  Google Scholar 

  27. Tolomeo, S., Macfarlane, J. A., Baldacchino, A., Koob, G. F. & Steele, J. D. Alcohol binge drinking: negative and positive valence system abnormalities. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 6, 126–134 (2021).

    PubMed  Google Scholar 

  28. Wolffgramm, J. & Heyne, A. From controlled drug intake to loss of control: the irreversible development of drug addiction in the rat. Behav. Brain Res. 70, 77–94 (1995). An early seminal demonstration of compulsive alcohol drinking.

    Article  CAS  PubMed  Google Scholar 

  29. Marti-Prats, L. et al. Baclofen decreases compulsive alcohol drinking in rats characterized by reduced levels of GAT-3 in the central amygdala. Addict. Biol. 26, e13011 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Belin-Rauscent, A., Fouyssac, M., Bonci, A. & Belin, D. How preclinical models evolved to resemble the diagnostic criteria of drug addiction. Biol. Psychiatry 79, 39–46 (2016).

    Article  PubMed  Google Scholar 

  31. Deroche-Gamonet, V., Belin, D. & Piazza, P. V. Evidence for addiction-like behavior in the rat. Science 305, 1014–1017 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Jones, J. A. et al. Neurobehavioral precursors of compulsive cocaine seeking in dual frontostriatal circuits. Biol. Psychiatry Glob. Open Sci. 4, 194–202 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Giuliano, C., Belin, D. & Everitt, B. J. Compulsive alcohol seeking results from a failure to disengage dorsolateral striatal control over behavior. J. Neurosci. 39, 1744–1754 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Giuliano, C. et al. Evidence for a long-lasting compulsive alcohol seeking phenotype in rats. Neuropsychopharmacology 43, 728–738 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Everitt, B. J. Sexual motivation: a neural and behavioural analysis of the mechanisms underlying appetitive and copulatory responses of male rats. Neurosci. Biobehav. Rev. 14, 217–232 (1990).

    Article  CAS  PubMed  Google Scholar 

  36. Robbins, T. W. Relationship between reward-enhancing and stereotypical effects of psychomotor stimulant-drugs. Nature 264, 57–59 (1976).

    Article  CAS  PubMed  Google Scholar 

  37. Thorndike, E. L. The law of effect. Am. J. Psychol. 39, 212–222 (1927).

    Article  Google Scholar 

  38. Olds, J. & Milner, P. Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J. Comp. Physiol. Psychol. 47, 419–427 (1954).

    Article  CAS  PubMed  Google Scholar 

  39. Pascoli, V. et al. Cell-type specific synaptic plasticity in dorsal striatum is associated with punishment-resistance compulsive-like cocaine self-administration in mice. Neuropsychopharmacology 48, 448–458 (2023).

    Article  CAS  PubMed  Google Scholar 

  40. Harada, M., Pascoli, V., Hiver, A., Flakowski, J. & Lüscher, C. Cortico-striatal activity driving compulsive reward-seeking. Biol. Psychiatry 90, 808–818 (2021).

    Article  PubMed  Google Scholar 

  41. Lüscher, C., Robbins. T. W., & Everitt, B. J. The transition to compulsion in addiction. Nat. Rev. Neurosci. 21, 247–263 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Heath, R. G. Electrical self-stimulation of the brain in man. Am. J. Psychiatry 120, 571–577 (1963).

    Article  CAS  PubMed  Google Scholar 

  43. Taylor, J. R. & Robbins, T. W. 6-Hydroxydopamine lesions of the nucleus accumbens, but not of the caudate nucleus, attenuate enhanced responding with reward-related stimuli produced by intra-accumbens d-amphetamine. Psychopharmacology 90, 390–397 (1986).

    Article  CAS  PubMed  Google Scholar 

  44. Robbins, T. W. & Costa, R. M. Habits. Curr. Biol. 27, R1200–R1206 (2017).

    Article  CAS  PubMed  Google Scholar 

  45. Dickinson, A. Actions and habits: the development of behavioural autonomy. Philos. Trans. R. Soc. Lond. B 308, 67–78 (1985).

    Article  Google Scholar 

  46. Marti-Prats, L. et al. The development of compulsive coping behavior depends on dorsolateral striatum dopamine-dependent mechanisms. Mol. Psychiatry 28, 4666–4678 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Belin, D., Economidou, D., Pelloux, Y. & Everitt, B. J. Habit formation and compulsion. Anim. Model. Drug Addiction 53, 337–378 (2011).

    Article  CAS  Google Scholar 

  48. Jentsch, J. D. & Taylor, J. R. Impulsivity resulting from frontostriatal dysfunction in drug abuse: implications for the control of behavior by reward-related stimuli. Psychopharmacology 146, 373–390 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Izquierdo, A., Brigman, J. L., Radke, A. K., Rudebeck, P. H. & Holmes, A. The neural basis of reversal learning: an updated perspective. Neuroscience 345, 12–26 (2017).

    Article  CAS  PubMed  Google Scholar 

  50. Clarke, H. F., Dalley, J. W., Crofts, H. S., Robbins, T. W. & Roberts, A. C. Cognitive inflexibility after prefrontal serotonin depletion. Science 304, 878–880 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Taylor, J. R. & Robbins, T. W. Enhanced behavioural control by conditioned reinforcers following microinjections of d-amphetamine into the nucleus accumbens. Psychopharmacology 84, 405–412 (1984).

    Article  CAS  PubMed  Google Scholar 

  52. Fouyssac, M. et al. Negative urgency exacerbates relapse to cocaine seeking after abstinence. Biol. Psychiatry 91, 1051–1060 (2022).

    Article  CAS  PubMed  Google Scholar 

  53. Belin, D., Belin-Rauscent, A., Murray, J. E. & Everitt, B. J. Addiction: failure of control over maladaptive incentive habits. Curr. Opin. Neurobiol. 23, 564–572 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Belin, D. & Everitt, B. J. in Handbook of Basal Ganglia Structure and Function. Handbook of Behavioral Neuroscience, Vol. 13 (eds Heinz, S. & Kuei, T.) 571–592 (Elsevier, Academic, 2010).

  55. Everitt, B. J. & Robbins, T. W. Drug addiction: updating actions to habits to compulsions ten years on. Annu. Rev. Psychol. 67, 23–50 (2016).

    Article  PubMed  Google Scholar 

  56. Robbins, T. W., Vaghi, M. M. & Banca, P. Obsessive-compulsive disorder: puzzles and prospects. Neuron 102, 27–47 (2019).

    Article  CAS  PubMed  Google Scholar 

  57. Gillan, C. M. et al. Enhanced avoidance habits in obsessive-compulsive disorder. Biol. Psychiatry 75, 631–638 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Schwabe, L. & Wolf, O. T. Stress-induced modulation of instrumental behavior: from goal-directed to habitual control of action. Behav. Brain Res. 219, 321–328 (2011).

    Article  PubMed  Google Scholar 

  59. Dias-Ferreira, E. et al. Chronic stress causes frontostriatal reorganization and affects decision-making. Science 325, 621–625 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Doll, B. B., Shohamy, D. & Daw, N. D. Multiple memory systems as substrates for multiple decision systems. Neurobiol. Learn. Mem. 117, 4–13 (2015).

    Article  PubMed  Google Scholar 

  61. Dayan, P. & Daw, N. D. Decision theory, reinforcement learning, and the brain. Cogn. Affect. Behav. Neurosci. 8, 429–453 (2008).

    Article  PubMed  Google Scholar 

  62. Voon, V. et al. Disorders of compulsivity: a common bias towards learning habits. Mol. Psychiatry 20, 345–352 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. Menon, V. & D’Esposito, M. The role of PFC networks in cognitive control and executive function. Neuropsychopharmacology 47, 90–103 (2022).

    Article  PubMed  Google Scholar 

  64. Everitt, B. J. & Robbins, T. W. Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat. Neurosci. 8, 1481–1489 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Miyake, A. et al. The unity and diversity of executive functions and their contributions to complex ‘frontal lobe’ tasks: a latent variable analysis. Cogn. Psychol. 41, 49–100 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Hardwick, R. M., Forrence, A. D., Krakauer, J. W. & Haith, A. M. Time-dependent competition between goal-directed and habitual response preparation. Nat. Hum. Behav. 3, 1252–1262 (2019). Describes a striking new human test paradigm for examining factors influencing the balance between goal-directed and habitual responding based on concepts in motor control and showing that the two systems act in parallel from early in training rather than the emergence of habits depending on the training duration.

    Article  PubMed  Google Scholar 

  67. Jones, C. L., Minati, L., Harrison, N. A., Ward, J. & Critchley, H. D. Under pressure: response urgency modulates striatal and insula activity during decision-making under risk. PLoS ONE 6, e20942 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zorrilla, E. P. & Koob, G. F. Impulsivity derived from the dark side: neurocircuits that contribute to negative urgency. Front. Behav. Neurosci. 13, 136 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Um, M., Hummer, T. A. & Cyders, M. A. Relationship of negative urgency to cingulo-insular and cortico-striatal resting state functional connectivity in tobacco use. Brain Imaging Behav. 14, 1921–1932 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Lee, S. W., Shimojo, S. & O’Doherty, J. P. Neural computations underlying arbitration between model-based and model-free learning. Neuron 81, 687–699 (2014). Describes a new method for measuring arbitration between goal-directed and habitual behaviour based on the model-based/model-free paradigm, and uses it to delineate neural mechanisms underlying this capacity using functional MRI.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gruner, P., Anticevic, A., Lee, D. & Pittenger, C. Arbitration between action strategies in obsessive-compulsive disorder. Neuroscientist 22, 188–198 (2016). Imaginative application of the hypothesis of arbitration between goal-directed and habitual behaviour to obsessive-compulsive disorder — raising the intriguing possibility that this process may be impaired rather than goal-directed and habit systems per se.

    Article  PubMed  Google Scholar 

  72. Ruan, Z. et al. Impairment of arbitration between model-based and model-free reinforcement learning in obsessive-compulsive disorder. Front. Psychiatry 14, 1162800 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Seok, D. et al. Neurocircuit dynamics of arbitration between decision-making strategies across obsessive-compulsive and related disorders. NeuroImage Clin. 35, 103073 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Strauss, A. Y. et al. Why check? A meta-analysis of checking in obsessive-compulsive disorder: threat vs. distrust of senses. Clin. Psychol. Rev. 75, 101807 (2020).

    Article  PubMed  Google Scholar 

  75. Fradkin, I., Adams, R. A., Parr, T., Roiser, J. P. & Huppert, J. D. Searching for an anchor in an unpredictable world: a computational model of obsessive compulsive disorder. Psychol. Rev. 127, 672–699 (2020). This innovative theoretical paper provides a new computational model of behavioural processes underlying obsessive-compulsive disorder focusing on contamination and compulsive washing behaviour, based on the idea that patients with obsessive-compulsive disorder have special difficulties in state transitions in behaviour. These difficulties are hypothesized to be enhanced under conditions of environmental volatility and unpredictability, whereas in familiar circumstances, habitual behaviour predominates.

    Article  PubMed  Google Scholar 

  76. Velazquez-Sanchez, C., Muresan, L., Marti-Prats, L. & Belin, D. The development of compulsive coping behaviour is associated with a downregulation of Arc in a locus coeruleus neuronal ensemble. Neuropsychopharmacology 48, 653–663 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Koob, G. F. & Le Moal, M. Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology 24, 97–129 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Rauch, S. L. et al. Regional cerebral blood flow measured during symptom provocation in obsessive-compulsive disorder using oxygen 15-labeled carbon dioxide and positron emission tomography. Arch. Gen. Psychiatry 51, 62–70 (1994). The culmination of a series of seminal articles using positron emission tomography to analyse the activity of the orbitofrontal cortex, anterior cingulate cortex and caudate nucleus in obsessive-compulsive disorder, through the metabolic activity of these regions. A special aspect of this study was the use of a symptom provocation design.

    Article  CAS  PubMed  Google Scholar 

  79. Saxena, S., Brody, A. L., Schwartz, J. M. & Baxter, L. R. Neuroimaging and frontal-subcortical circuitry in obsessive-compulsive disorder. Br. J. Psychiatry 173 (suppl. 35), 26–37 (1998).

    Article  Google Scholar 

  80. Rauch, S. Predictors of fluvoxamine response in contamination-related obsessive compulsive disorder: a PET symptom provocation study. Neuropsychopharmacology 27, 782–791 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Graybiel, A. M. & Rauch, S. L. Toward a neurobiology of obsessive-compulsive disorder. Neuron 28, 343–347 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Breiter, H. C. et al. Functional magnetic resonance imaging of symptom provocation in obsessive-compulsive disorder. Arch. Gen. Psychiatry 53, 595–606 (1996).

    Article  CAS  PubMed  Google Scholar 

  83. Beucke, J. C. et al. Abnormally high degree connectivity of the orbitofrontal cortex in obsessive-compulsive disorder. JAMA Psychiatry 70, 619–629 (2013).

    Article  PubMed  Google Scholar 

  84. Meunier, D. et al. Brain functional connectivity in stimulant drug dependence and obsessive-compulsive disorder. NeuroImage 59, 1461–1468 (2012).

    Article  PubMed  Google Scholar 

  85. Balleine, B. W. & O’Doherty, J. P. Human and rodent homologies in action control: corticostriatal determinants of goal-directed and habitual action. Neuropsychopharmacology 35, 48–69 (2010).

    Article  PubMed  Google Scholar 

  86. Ersche, K. D. et al. Abnormal structure of frontostriatal brain systems is associated with aspects of impulsivity and compulsivity in cocaine dependence. Brain 134, 2013–2024 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Kang, D. H. et al. Volumetric investigation of the frontal-subcortical circuitry in patients with obsessive-compulsive disorder. J. Neuropsychiatry Clin. Neurosci. 16, 342–349 (2004).

    Article  PubMed  Google Scholar 

  88. Atmaca, M. et al. Volumetric MRI assessment of brain regions in patients with refractory obsessive-compulsive disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 30, 1051–1057 (2006).

    Article  PubMed  Google Scholar 

  89. Yang, Z. et al. A multimodal meta-analysis of regional functional and structural brain abnormalities in obsessive-compulsive disorder. Eur. Arch. Psychiatry Clin. Neurosci. 274, 165–180 (2023).

    Article  PubMed  Google Scholar 

  90. de Vries, F. E. et al. Compensatory frontoparietal activity during working memory: an endophenotype of obsessive-compulsive disorder. Biol. Psychiatry 76, 878–887 (2014).

    Article  PubMed  Google Scholar 

  91. Rolls, E. T. The Orbitofrontal Cortex (Oxford Univ. Press, 2019).

  92. Hervig, M. E. et al. Dissociable and paradoxical roles of rat medial and lateral orbitofrontal cortex in visual serial reversal learning. Cereb. Cortex 30, 1016–1029 (2020).

    Article  CAS  PubMed  Google Scholar 

  93. Zald, D. & Rauch, S. (eds.) The Orbitofrontal Cortex (Oxford Univ. Press, 2006).

  94. Jung, W. H. et al. Abnormal corticostriatal-limbic functional connectivity in obsessive-compulsive disorder during reward processing and resting-state. NeuroImage Clin. 3, 27–38 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Haber, S. N. Corticostriatal circuitry. Dialogues Clin. Neurosci. 18, 7–21 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Anticevic, A. et al. Global resting-state functional magnetic resonance imaging analysis identifies frontal cortex, striatal, and cerebellar dysconnectivity in obsessive-compulsive disorder. Biol. Psychiatry 75, 595–605 (2014).

    Article  PubMed  Google Scholar 

  97. Harrison, B. J. et al. Altered corticostriatal functional connectivity in obsessive-compulsive disorder. Arch. Gen. Psychiatry 66, 1189–1200 (2009).

    Article  PubMed  Google Scholar 

  98. Hou, J. M. et al. Resting-state functional connectivity abnormalities in patients with obsessive-compulsive disorder and their healthy first-degree relatives. J. Psychiatry Neurosci. 39, 304–311 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Naze, S. et al. Mechanisms of imbalanced frontostriatal functional connectivity in obsessive-compulsive disorder. Brain 146, 1322–1327 (2023).

    Article  PubMed  Google Scholar 

  100. Figee, M. et al. Compulsivity in obsessive-compulsive disorder and addictions. Eur. Neuropsychopharmacol. 26, 856–868 (2016).

    Article  CAS  PubMed  Google Scholar 

  101. Xu, C. et al. Imbalance in functional and structural connectivity underlying goal-directed and habitual learning systems in obsessive-compulsive disorder. Cereb. Cortex 32, 3690–3705 (2022).

    Article  PubMed  Google Scholar 

  102. Ersche, K. D. et al. Brain networks underlying vulnerability and resilience to drug addiction. Proc. Natl Acad. Sci. USA 117, 15253–15261 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Ziegler, G. et al. Compulsivity and impulsivity traits linked to attenuated developmental frontostriatal myelination trajectories. Nat. Neurosci. 22, 992–999 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Akkermans, S. E. A. et al. Frontostriatal functional connectivity correlates with repetitive behaviour across autism spectrum disorder and obsessive-compulsive disorder. Psychol. Med. 49, 2247–2255 (2019).

    Article  PubMed  Google Scholar 

  105. Radua, J., van den Heuvel, O. A., Surguladze, S. & Mataix-Cols, D. Meta-analytical comparison of voxel-based morphometry studies in obsessive-compulsive disorder vs other anxiety disorders. Arch. Gen. Psychiatry 67, 701–711 (2010).

    Article  PubMed  Google Scholar 

  106. Norman, L. J. et al. Structural and functional brain abnormalities in attention-deficit/hyperactivity disorder and obsessive-compulsive disorder: a comparative meta-analysis. JAMA Psychiatry 73, 815–825 (2016).

    Article  PubMed  Google Scholar 

  107. Vaghi, M. M. et al. Hypoactivation and dysconnectivity of a frontostriatal circuit during goal-directed planning as an endophenotype for obsessive-compulsive disorder. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2, 655–663 (2017).

    PubMed  PubMed Central  Google Scholar 

  108. Vaghi, M. M. et al. Specific frontostriatal circuits for impaired cognitive flexibility and goal-directed planning in obsessive-compulsive disorder: evidence from resting-state functional connectivity. Biol. Psychiatry 81, 708–717 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Soriano-Mas, C. Functional brain imaging and OCD. Curr. Top. Behav. Neurosci. 49, 269–300 (2021).

    Article  PubMed  Google Scholar 

  110. Ersche, K. D. et al. Response perseveration in stimulant dependence is associated with striatal dysfunction and can be ameliorated by a D(2/3) receptor agonist. Biol. Psychiatry 70, 754–762 (2011).

    Article  CAS  PubMed  Google Scholar 

  111. Goldstein, R. Z. & Volkow, N. D. Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nat. Rev. Neurosci. 12, 652–669 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Chamberlain, S. et al. Orbitofrontal dysfunction in patients with obsessive-compulsive disorder and their unaffected relatives. Science 321, 421–422 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. van den Heuvel, O. A. et al. Frontal-striatal dysfunction during planning in obsessive-compulsive disorder. Arch. Gen. Psychiatry 62, 301–309 (2005).

    Article  PubMed  Google Scholar 

  114. Gu, B. M. et al. Neural correlates of cognitive inflexibility during task-switching in obsessive-compulsive disorder. Brain 131, 155–164 (2008).

    Article  PubMed  Google Scholar 

  115. de Wit, S. J. et al. Presupplementary motor area hyperactivity during response inhibition: a candidate endophenotype of obsessive-compulsive disorder. Am. J. Psychiatry 169, 1100–1108 (2012).

    Article  PubMed  Google Scholar 

  116. Vaghi, M. M. et al. Compulsivity is linked to reduced adolescent development of goal-directed control and frontostriatal functional connectivity. Proc. Natl Acad. Sci. USA 117, 25911–25922 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kim, D., Park, G. Y., JP, O. D. & Lee, S. W. Task complexity interacts with state-space uncertainty in the arbitration between model-based and model-free learning. Nat. Commun. 10, 5738 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Weissengruber, S., Lee, S. W., O’Doherty, J. P. & Ruff, C. C. Neurostimulation reveals context-dependent arbitration between model-based and model-free reinforcement learning. Cereb. Cortex 29, 4850–4862 (2019).

    Article  PubMed  Google Scholar 

  119. Gillan, C. M. et al. Functional neuroimaging of avoidance habits in obsessive-compulsive disorder. Am. J. Psychiatry 172, 284–293 (2015).

    Article  PubMed  Google Scholar 

  120. Hauser, T. U. et al. Increased fronto-striatal reward prediction errors moderate decision making in obsessive-compulsive disorder. Psychol. Med. 47, 1246–1258 (2017).

    Article  CAS  PubMed  Google Scholar 

  121. Apergis-Schoute, A. M. et al. Neural basis of impaired safety signaling in obsessive compulsive disorder. Proc. Natl Acad. Sci. USA 114, 3216–3221 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Murray, G. K. et al. Dopaminergic drug treatment remediates exaggerated cingulate prediction error responses in obsessive-compulsive disorder. Psychopharmacology 236, 2325–2336 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Sunol, M. et al. Differential patterns of brain activation between hoarding disorder and obsessive-compulsive disorder during executive performance. Psychol. Med. 50, 666–673 (2020).

    Article  PubMed  Google Scholar 

  124. Mataix-Cols, D. et al. Distinct neural correlates of washing, checking, and hoarding symptom dimensions in obsessive-compulsive disorder. Arch. Gen. Psychiatry 61, 564–576 (2004).

    Article  PubMed  Google Scholar 

  125. Banca, P. et al. Imbalance in habitual versus goal directed neural systems during symptom provocation in obsessive-compulsive disorder. Brain 138, 798–811 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Klugah-Brown, B. et al. Common neurofunctional dysregulations characterize obsessive-compulsive, substance use, and gaming disorders — an activation likelihood meta-analysis of functional imaging studies. Addict. Biol. 26, e12997 (2021).

    Article  PubMed  Google Scholar 

  127. Klugah‐Brown, B. et al. Common abnormality of gray matter integrity in substance use disorder and obsessive‐compulsive disorder: a comparative voxel‐based meta‐analysis. Hum. Brain Mapp. 42, 3871–3886 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Conti, A. A. & Baldacchino, A. M. Early-onset smoking theory of compulsivity development: a neurocognitive model for the development of compulsive tobacco smoking. Front. Psychiatry 14, 1209277 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Koban, L., Wager, T. D. & Kober, H. A neuromarker for drug and food craving distinguishes drug users from non-users. Nat. Neurosci. 26, 316–325 (2023).

    Article  CAS  PubMed  Google Scholar 

  130. Naqvi, N. H., Rudrauf, D., Damasio, H. & Bechara, A. Damage to the insula disrupts addiction to cigarette smoking. Science 315, 531–534 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Schienle, A., Potthoff, J. & Wabnegger, A. Voxel-based morphometry analysis of structural brain scans in skin-picking disorder. Compr. Psychiatry 84, 82–86 (2018).

    Article  PubMed  Google Scholar 

  132. Jones, R. & Bhattacharya, J. Alpha activity in the insula accompanies the urge to neutralize in sub-clinical obsessive-compulsive participants. J. Behav. Addict. 1, 96–105 (2012).

    Article  PubMed  Google Scholar 

  133. Jackson, S. R., Parkinson, A., Kim, S. Y., Schuermann, M. & Eickhoff, S. B. On the functional anatomy of the urge-for-action. Cogn. Neurosci. 2, 227–243 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Bruin, W. B. et al. The functional connectome in obsessive-compulsive disorder: resting-state mega-analysis and machine learning classification for the ENIGMA-OCD consortium. Mol. Psychiatry 28, 4307–4319 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Miquel, M., Nicola, S. M., Gil-Miravet, I., Guarque-Chabrera, J. & Sanchez-Hernandez, A. A working hypothesis for the role of the cerebellum in impulsivity and compulsivity. Front. Behav. Neurosci. 13, 99 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Kubota, Y. et al. Putamen volume correlates with obsessive compulsive characteristics in healthy population. Psychiatry Res. Neuroimaging 249, 97–104 (2016).

    Article  PubMed  Google Scholar 

  137. Hollander, E. et al. Striatal volume on magnetic resonance imaging and repetitive behaviors in autism. Biol. Psychiatry 58, 226–232 (2005).

    Article  PubMed  Google Scholar 

  138. Wang, A. R. et al. Human habit neural circuitry may be perturbed in eating disorders. Sci. Transl. Med. 15, eabo4919 (2023).

    Article  CAS  PubMed  Google Scholar 

  139. Ersche, K. D. et al. Reduced glutamate turnover in the putamen is linked with automatic habits in human cocaine addiction. Biol. Psychiatry 89, 970–979 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Biria, M. et al. Cortical glutamate and GABA are related to compulsive behaviour in individuals with obsessive compulsive disorder and healthy controls. Nat. Commun. 14, 3324 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Duan, L. Y. et al. Controlling one’s world: identification of sub-regions of primate PFC underlying goal-directed behavior. Neuron 109, 2485–2498.e5 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Garner, J. P., Weisker, S. M., Dufour, B. & Mench, J. A. Barbering (fur and whisker trimming) by laboratory mice as a model of human trichotillomania and obsessive-compulsive spectrum disorders. Comp. Med. 54, 216–224 (2004).

    CAS  PubMed  Google Scholar 

  143. Welch, J. M. et al. Cortico-striatal synaptic defects and OCD-like behaviours in Sapap3-mutant mice. Nature 448, 894–900 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Ullrich, M. et al. OCD-like behavior is caused by dysfunction of thalamo-amygdala circuits and upregulated TrkB/ERK-MAPK signaling as a result of SPRED2 deficiency. Mol. Psychiatry 23, 444–458 (2018).

    Article  CAS  PubMed  Google Scholar 

  145. Greer, J. M. & Capecchi, M. R. Hoxb8 is required for normal grooming behavior in mice. Neuron 33, 23–34 (2002).

    Article  CAS  PubMed  Google Scholar 

  146. Wan, Y. et al. Circuit-selective striatal synaptic dysfunction in the Sapap3 knockout mouse model of obsessive-compulsive disorder. Biol. Psychiatry 75, 623–630 (2014).

    Article  CAS  PubMed  Google Scholar 

  147. Corbit, V. L., Manning, E. E., Gittis, A. H. & Ahmari, S. E. Strengthened inputs from secondary motor cortex to striatum in a mouse model of compulsive behavior. J. Neurosci. 39, 2965–2975 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Lei, H., Lai, J., Sun, X., Xu, Q. & Feng, G. Lateral orbitofrontal dysfunction in the Sapap3 knockout mouse model of obsessive-compulsive disorder. J. Psychiatry Neurosci. 44, 120–131 (2019).

    Article  PubMed  Google Scholar 

  149. Manning, E. E., Geramita, M. A., Piantadosi, S. C., Pierson, J. L. & Ahmari, S. E. Distinct patterns of abnormal lateral orbitofrontal cortex activity during compulsive grooming and reversal learning normalize after fluoxetine. Biol. Psychiatry 93, 989–999 (2023).

    Article  CAS  PubMed  Google Scholar 

  150. van den Boom, B. J. G. et al. Unraveling the mechanisms of deep-brain stimulation of the internal capsule in a mouse model. Nat. Commun. 14, 5385 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Yang, Z. et al. Dysfunction of orbitofrontal GABAergic interneurons leads to impaired reversal learning in a mouse model of obsessive-compulsive disorder. Curr. Biol. 31, 381–393.e4 (2021).

    Article  CAS  PubMed  Google Scholar 

  152. Piantadosi, S. C. et al. Hyperactivity of Indirect Pathway-Projecting Spiny Projection Neurons Drives Compulsive Behavior (Cold Spring Harbor Laboratory, 2022).

  153. Apergis-Schoute, A. M. et al. Perseveration and shifting in obsessive-compulsive disorder as a function of uncertainty, punishment, and serotonergic medication. Biol. Psychiatry Global Open Sci. https://doi.org/10.1016/j.bpsgos.2023.06.004 (2024).

  154. Milton, L. K. et al. Suppression of Cortico-Striatal Circuit Activity Improves Cognitive Flexibility and Prevents Body Weight Loss in Activity-Based Anorexia in Rats (Cold Spring Harbor Laboratory, 2020).

  155. Burguiere, E., Monteiro, P., Feng, G. & Graybiel, A. M. Optogenetic stimulation of lateral orbitofronto-striatal pathway suppresses compulsive behaviors. Science 340, 1243–1246 (2013). Seminal use of optogenetic techniques in a prominent genetic (Dlgap3) mouse model of obsessive-compulsive disorder to restore control over compulsive grooming behaviour.

    Article  CAS  PubMed  Google Scholar 

  156. Ahmari, S. E. et al. Repeated cortico-striatal stimulation generates persistent OCD-like behavior. Science 340, 1234–1239 (2013). Seminal use of optogenetic techniques in a prominent genetic (Dlgap3) mouse model of obsessive-compulsive disorder to simulate symptom provocation via orbitofrontal-striatal pathways, leading to compulsive grooming behaviour.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Lamothe, H. et al. The Sapap3(−/−) mouse reconsidered as a comorbid model expressing a spectrum of pathological repetitive behaviours. Transl. Psychiatry 13, 26 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Belin-Rauscent, A. et al. From impulses to maladaptive actions: the insula is a neurobiological gate for the development of compulsive behavior. Mol. Psychiatry 21, 491–499 (2016).

    Article  CAS  PubMed  Google Scholar 

  159. Fouyssac, M. et al. Environment-dependent behavioral traits and experiential factors shape addiction vulnerability. Eur. J. Neurosci. 53, 1794–1808 (2021).

    Article  CAS  PubMed  Google Scholar 

  160. Navarro, S. V. et al. Behavioral biomarkers of schizophrenia in high drinker rats: a potential endophenotype of compulsive neuropsychiatric disorders. Schizophr. Bull. 43, 778–787 (2017).

    Article  PubMed  Google Scholar 

  161. Robbins, T. W. & Koob, G. F. Selective disruption of displacement behaviour by lesions of the mesolimbic dopamine system. Nature 285, 409–412 (1980).

    Article  CAS  PubMed  Google Scholar 

  162. Ansquer, S. et al. Atomoxetine decreases vulnerability to develop compulsivity in high impulsive rats. Biol. Psychiatry 75, 825–832 (2014).

    Article  CAS  PubMed  Google Scholar 

  163. Mora, S., Merchan, A., Aznar, S., Flores, P. & Moreno, M. Increased amygdala and decreased hippocampus volume after schedule-induced polydipsia in high drinker compulsive rats. Behav. Brain Res. 390, 112592 (2020).

    Article  CAS  PubMed  Google Scholar 

  164. Merchan, A. et al. Excessive habit formation in schedule-induced polydipsia: microstructural analysis of licking among rat strains and involvement of the orbitofrontal cortex. Genes Brain Behav. 18, e12489 (2019).

    Article  CAS  PubMed  Google Scholar 

  165. Moreno, M. et al. Poor inhibitory control and neurochemical differences in high compulsive drinker rats selected by schedule-induced polydipsia. Psychopharmacology 219, 661–672 (2012).

    Article  CAS  PubMed  Google Scholar 

  166. Mora, S. et al. Reduced cortical serotonin 5-HT2A receptor binding and glutamate activity in high compulsive drinker rats. Neuropharmacology 143, 10–19 (2018).

    Article  CAS  PubMed  Google Scholar 

  167. Mills, I. H. & Medlicott, L. Anorexia nervosa as a compulsive behaviour disease. Q. J. Med. 83, 507–522 (1992).

    CAS  PubMed  Google Scholar 

  168. Moore, C. F., Sabino, V., Koob, G. F. & Cottone, P. Neuroscience of compulsive eating behavior. Front. Neurosci. 11, 469 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Beneke, W. M., Schulte, S. E. & vander Tuig, J. G. An analysis of excessive running in the development of activity anorexia. Physiol. Behav. 58, 451–457 (1995).

    Article  CAS  PubMed  Google Scholar 

  170. Price, A. E., Stutz, S. J., Hommel, J. D., Anastasio, N. C. & Cunningham, K. A. Anterior insula activity regulates the associated behaviors of high fat food binge intake and cue reactivity in male rats. Appetite 133, 231–239 (2019).

    Article  PubMed  Google Scholar 

  171. Furlong, T. M., Jayaweera, H. K., Balleine, B. W. & Corbit, L. H. Binge-like consumption of a palatable food accelerates habitual control of behavior and is dependent on activation of the dorsolateral striatum. J. Neurosci. 34, 5012–5022 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Hildebrandt, B. A., Fisher, H., LaPalombara, Z., Young, M. E. & Ahmari, S. E. Corticostriatal dynamics underlying components of binge-like consumption of palatable food in mice. Appetite 183, 106462 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Vousden, G. H., Paulcan, S., Robbins, T. W., Eagle, D. M. & Milton, A. L. Checking responses of goal- and sign-trackers are differentially affected by threat in a rodent analog of obsessive-compulsive disorder. Learn. Mem. 27, 190–200 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Eagle, D. M. et al. The dopamine D2/D3 receptor agonist quinpirole increases checking-like behaviour in an operant observing response task with uncertain reinforcement: a novel possible model of OCD. Behav. Brain Res. 264, 207–229 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. d’Angelo, C., Eagle, D. M., Coman, C. M. & Robbins, T. W. Role of the medial prefrontal cortex and nucleus accumbens in an operant model of checking behaviour and uncertainty. Brain Neurosci. Adv. 1, 2398212817733403 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Martinez-Rivera, F. J. et al. A novel insular/orbital-prelimbic circuit that prevents persistent avoidance in a rodent model of compulsive behavior. Biol. Psychiatry 93, 1000–1009 (2023).

    Article  PubMed  Google Scholar 

  177. Hu, Y. Z. et al. Compulsive drug use is associated with imbalance of orbitofrontal- and prelimbic-striatal circuits in punishment-resistant individuals. Proc. Natl Acad. Sci. USA 116, 9066–9071 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Chen, B. T. et al. Rescuing cocaine-induced prefrontal cortex hypoactivity prevents compulsive cocaine seeking. Nature 496, 359–362 (2013).

    Article  CAS  PubMed  Google Scholar 

  179. Jadhav, K. S. et al. Reversing anterior insular cortex neuronal hypoexcitability attenuates compulsive behavior in adolescent rats. Proc. Natl Acad. Sci. USA 119, e2121247119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Spierling, S. et al. Insula to ventral striatal projections mediate compulsive eating produced by intermittent access to palatable food. Neuropsychopharmacology 45, 579–588 (2020).

    Article  PubMed  Google Scholar 

  181. Chen, Y. et al. An orbitofrontal cortex–anterior insular cortex circuit gates compulsive cocaine use. Sci. Adv. 8, eabq5745 (2022). A seminal study using multimodal neurobiological methods to highlight the role of the anterior insula in individual differences in a model of compulsive cocaine taking in rats. Chemogenetic manipulation of activity of this region is shown bidirectionally to regulate this behaviour.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Pelloux, Y., Dilleen, R., Economidou, D., Theobald, D. & Everitt, B. J. Reduced forebrain serotonin transmission is causally involved in the development of compulsive cocaine seeking in rats. Neuropsychopharmacology 37, 2505–2514 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Hodebourg, R. et al. Heroin seeking becomes dependent on dorsal striatal dopaminergic mechanisms and can be decreased by N-acetylcysteine. Eur. J. Neurosci. 50, 2036–2044 (2019).

    Article  PubMed  Google Scholar 

  184. Belin, D. & Everitt, B. J. Cocaine seeking habits depend upon dopamine-dependent serial connectivity linking the ventral with the dorsal striatum. Neuron 57, 432–441 (2008).

    Article  CAS  PubMed  Google Scholar 

  185. Giuliano, C., Puaud, M., Cardinal, R. N., Belin, D. & Everitt, B. J. Individual differences in the engagement of habitual control over alcohol seeking predict the development of compulsive alcohol seeking and drinking. Addict. Biol. 26, e13041 (2021).

    Article  PubMed  Google Scholar 

  186. Augier, E. et al. A molecular mechanism for choosing alcohol over an alternative reward. Science 360, 1321–1326 (2018).

    Article  CAS  PubMed  Google Scholar 

  187. Halladay, L. R. et al. Prefrontal regulation of punished ethanol self-administration. Biol. Psychiatry 87, 967–978 (2020).

    Article  CAS  PubMed  Google Scholar 

  188. Murray, J. E., Belin, D. & Everitt, B. J. Double dissociation of the dorsomedial and dorsolateral striatal control over the acquisition and performance of cocaine seeking. Neuropsychopharmacology 37, 2456–2466 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Everitt, B. J., Giuliano, C. & Belin, D. Addictive behaviour in experimental animals: prospects for translation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 373, 20170027 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Ersche, K. D. et al. Carrots and sticks fail to change behavior in cocaine addiction. Science 352, 1468–1471 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Killcross, S. & Coutureau, E. Coordination of actions and habits in the medial prefrontal cortex of rats. Cereb. Cortex 13, 400–408 (2003).

    Article  PubMed  Google Scholar 

  192. Coutureau, E. & Killcross, S. Inactivation of the infralimbic prefrontal cortex reinstates goal-directed responding in overtrained rats. Behav. Brain Res. 146, 167–174 (2003).

    Article  PubMed  Google Scholar 

  193. Duan, Y. et al. Compulsive drug-taking is associated with habenula–frontal cortex connectivity. Proc. Natl Acad. Sci. USA 119, e2208867119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Chen, C., Hsu, F. C., Li, C. W. & Huang, M. C. Structural, functional, and neurochemical neuroimaging of methamphetamine-associated psychosis: a systematic review. Psychiatry Res. Neuroimaging 292, 23–31 (2019).

    Article  PubMed  Google Scholar 

  195. Belin, D., Mar, A. C., Dalley, J. W., Robbins, T. W. & Everitt, B. J. High impulsivity predicts the switch to compulsive cocaine-taking. Science 320, 1352–1355 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Kirson, D. et al. Decreased excitability of leptin-sensitive anterior insula pyramidal neurons in a rat model of compulsive food demand. Neuropharmacology 208, 108980 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. de Carvalho, L. M., Chen, H., Sutter, M., & Lasek A. M. Sexually dimorphic role for insular perineuronal nets in aversion-resistant alcohol consumption. Front. Psychiatry 14, 1122423 (2023).

    Article  Google Scholar 

  198. Apergis-Schoute, A. M. et al. Hyperconnectivity of the ventromedial prefrontal cortex in obsessive-compulsive disorder. Brain Neurosci. Adv. 2, 1–10 (2018).

    Article  PubMed  Google Scholar 

  199. Rolls, E. T., Loh, M. & Deco, G. An attractor hypothesis of obsessive-compulsive disorder. Eur. J. Neurosci. 28, 782–793 (2008).

    Article  PubMed  Google Scholar 

  200. Porrino, L. J., Smith, H. R., Nader, M. A. & Beveridge, T. J. The effects of cocaine: a shifting target over the course of addiction. Prog. Neuropsychopharmacol. Biol. Psychiatry 31, 1593–1600 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Haber, S. Parallel and integrative processing through the basal ganglia reward circuit: lessons from addiction. Biol. Psychiatry 64, 173–174 (2008).

    Article  PubMed  Google Scholar 

  202. Murray, J. E. et al. Basolateral and central amygdala differentially recruit and maintain dorsolateral striatum-dependent cocaine-seeking habits. Nat. Commun. 6, 10088 (2015).

    Article  CAS  PubMed  Google Scholar 

  203. Haber, S. N., Fudge, J. L. & McFarland, N. R. Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J. Neurosci. 20, 2369–2382 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Vollstadt-Klein, S. et al. Initial, habitual and compulsive alcohol use is characterized by a shift of cue processing from ventral to dorsal striatum. Addiction 105, 1741–1749 (2010).

    Article  PubMed  Google Scholar 

  205. Dong, G. H. et al. Dorsal and ventral striatal functional connectivity shifts play a potential role in internet gaming disorder. Commun. Biol. 4, 866 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Tiego, J. et al. Heritability of overlapping impulsivity and compulsivity dimensional phenotypes. Sci. Rep. 10, 14378 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Roos, C. R., Sala, M., Kober, H., Vanzhula, I. A. & Levinson, C. A. Mindfulness-based interventions for eating disorders: the potential to mobilize multiple associative-learning change mechanisms. Int. J. Eat. Disord. 54, 1601–1607 (2021).

    Article  PubMed  Google Scholar 

  208. Brewer, J. A. et al. Mindfulness training for smoking cessation: results from a randomized controlled trial. Drug Alcohol. Depend. 119, 72–80 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Aouizerate, B. et al. Deep brain stimulation for OCD and major depression. Am. J. Psychiatry 162, 2192 (2005).

    Article  PubMed  Google Scholar 

  210. Chang, R. et al. Deep brain stimulation in drug addiction treatment: research progress and perspective. Front. Psychiatry 13, 858638 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Lee, Y. J. et al. Repetitive transcranial magnetic stimulation of the supplementary motor area in treatment-resistant obsessive-compulsive disorder: an open-label pilot study. J. Clin. Neurosci. 44, 264–268 (2017).

    Article  PubMed  Google Scholar 

  212. Bergfeld, I. O. et al. Invasive and non-invasive neurostimulation for OCD. Curr. Top. Behav. Neurosci. 49, 399–436 (2021).

    Article  PubMed  Google Scholar 

  213. Torres-Castano, A. et al. Transcranial magnetic stimulation for the treatment of cocaine addiction: a systematic review. J. Clin. Med. 10, 5595 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Hanlon, C. A. et al. Developing repetitive transcranial magnetic stimulation (rTMS) as a treatment tool for cocaine use disorder: a series of six translational studies. Curr. Behav. Neurosci. Rep. 4, 341–352 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Pinhal, C. M. et al. Differential effects of deep brain stimulation of the internal capsule and the striatum on excessive grooming in Sapap3 mutant mice. Biol. Psychiatry 84, 917–925 (2018).

    Article  PubMed  Google Scholar 

  216. Brown, L. T. et al. Dorsal anterior cingulotomy and anterior capsulotomy for severe, refractory obsessive-compulsive disorder: a systematic review of observational studies. J. Neurosurg. 124, 77–89 (2016).

    Article  PubMed  Google Scholar 

  217. Tyagi, H. et al. A randomized trial directly comparing ventral capsule and anteromedial subthalamic nucleus stimulation in obsessive-compulsive disorder: clinical and imaging evidence for dissociable effects. Biol. Psychiatry 85, 726–734 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Li, N. et al. A unified functional network target for deep brain stimulation in obsessive-compulsive disorder. Biol. Psychiatry 90, 701–713 (2021).

    Article  PubMed  Google Scholar 

  219. Soleimani, G. et al. Converging evidence for frontopolar cortex as a target for neuromodulation in addiction treatment. Am. J. Psychiatry 181, 100–114 (2024).

    Article  PubMed  Google Scholar 

  220. Lissemore, J. I. et al. Brain serotonin synthesis capacity in obsessive-compulsive disorder: effects of cognitive behavioral therapy and sertraline. Transl. Psychiatry 8, 82 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Rodriguez, C. I. et al. In vivo effects of ketamine on glutamate-glutamine and gamma-aminobutyric acid in obsessive-compulsive disorder: proof of concept. Psychiatry Res. 233, 141–147 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Navarro, S. V., Gutierrez-Ferre, V., Flores, P. & Moreno, M. Activation of serotonin 5-HT2A receptors inhibits high compulsive drinking on schedule-induced polydipsia. Psychopharmacology 232, 683–697 (2015).

    Article  CAS  PubMed  Google Scholar 

  223. Hogg, S. & Dalvi, A. Acceleration of onset of action in schedule-induced polydipsia: combinations of SSRI and 5-HT1A and 5-HT1B receptor antagonists. Pharmacol. Biochem. Behav. 77, 69–75 (2004).

    Article  CAS  PubMed  Google Scholar 

  224. Williams, D. R. & Barry, H. III Counter conditioning in an operant conflict situation. J. Comp. Physiol. Psychol. 61, 154–156 (1966).

    Article  CAS  PubMed  Google Scholar 

  225. Pearce, J. M. & Dickinson, A. Pavlovian counterconditioning: changing the suppressive properties of shock by association with food. J. Exp. Psychol. Anim. Behav. Process. 1, 170–177 (1975).

    Article  CAS  PubMed  Google Scholar 

  226. Berridge, K. C. & Robinson, T. E. Parsing reward. Trends Neurosci. 26, 507–513 (2003).

    Article  CAS  PubMed  Google Scholar 

  227. Pessiglione, M. & Delgado, M. R. The good, the bad and the brain: neural correlates of appetitive and aversive values underlying decision making. Curr. Opin. Behav. Sci. 5, 78–84 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Strigo, I. A. & Craig, A. D. Interoception, homeostatic emotions and sympathovagal balance. Philos. Trans. R. Soc. Lond. B Biol. Sci. 371, 20160010 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Lipton, D. M., Gonzales, B. J. & Citri, A. Dorsal striatal circuits for habits, compulsions and addictions. Front. Syst. Neurosci. 13, 28 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Brett, M., Leff, A. P. & Rorden, C. Ashburner. Spatial normalization of brain images with focal lesions using cost function masking. J. Neuroimage 14, 486–500 (2001).

    Article  CAS  Google Scholar 

  231. Pascoli, V., Terrier, J., Hiver, A. & Luscher, C. Sufficiency of mesolimbic dopamine neuron stimulation for the progression to addiction. Neuron 88, 1054–1066 (2015).

    Article  CAS  PubMed  Google Scholar 

  232. Goodman, W. K. et al. The Yale–Brown obsessive compulsive scale. i. Development, use, and reliability. Arch. Gen. Psychiatry 46, 1006–1011 (1989).

    Article  CAS  PubMed  Google Scholar 

  233. Winchel, R. M. et al. The Psychiatric Institute Trichotillomania Scale (PITS). Psychopharmacol. Bull. 28, 463–476 (1992).

    CAS  PubMed  Google Scholar 

  234. Cavanna, A. E. et al. The Gilles de la Tourette syndrome-quality of life scale (GTS-QOL) development and validation. Neurology 71, 1410–1416 (2008).

    Article  CAS  PubMed  Google Scholar 

  235. Kim, S. W., Grant, J. E., Potenza, M. N., Blanco, C. & Hollander, E. The Gambling Symptom Assessment Scale (G-SAS): a reliability and validity study. Psychiatry Res. 166, 76–84 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  236. Franken, I. H. A., Hendriks, V. M. & van den Brink, W. Obsessive compulsive drug use scale. APA PsycTests https://doi.org/10.1037/t18284-000 (2002).

  237. Lam, K. S. & Aman, M. G. The repetitive behavior scale-revised: independent validation in individuals with autism spectrum disorders. J. Autism Dev. Disord. 37, 855–866 (2007).

    Article  PubMed  Google Scholar 

  238. Kagan, D. M. & Squires, R. L. in Measures for Clinical Practice and Research: A Sourcebook 4th edn, Vol. 1 (eds Fischer, J. & Corcoran, K.) 500–501 (Oxford Univ. Press, 2007).

  239. Moon, S. J. et al. Psychometric properties of the internet addiction test: a systematic review and meta-analysis. Cyberpsychol. Behav. Soc. Netw. 21, 473–484 (2018).

    Article  PubMed  Google Scholar 

  240. Schut, A. J., Castonguay, L. G. & Borkovec, T. D. Compulsive checking behaviors in generalized anxiety disorder. J. Clin. Psychol. 57, 705–715 (2001).

    Article  CAS  PubMed  Google Scholar 

  241. Nyatsanza, S. et al. A study of stereotypic behaviours in Alzheimer’s disease and frontal and temporal variant frontotemporal dementia. J. Neurol. Neurosurg. Psychiatry 74, 1398–1402 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Sanavio, E. Obsessions and compulsions: the Padua inventory. Behav. Res. Ther. 26, 169–177 (1988).

    Article  CAS  PubMed  Google Scholar 

  243. Burns, G. L., Keortge, S. G., Formea, G. M. & Sternberger, L. G. Revision of the Padua Inventory of obsessive compulsive disorder symptoms: distinctions between worry, obsessions, and compulsions. Behav. Res. Ther. 34, 163–173 (1996).

    Article  CAS  PubMed  Google Scholar 

  244. Foa, E. B. et al. The obsessive-compulsive inventory: development and validation of a short version. Psychol. Assess. 14, 485–496 (2002).

    Article  PubMed  Google Scholar 

  245. Gillan, C. M., Kosinski, M., Whelan, R., Phelps, E. A. & Daw, N. D. Characterizing a psychiatric symptom dimension related to deficits in goal-directed control. eLife 5, e11305 (2016). An important article that links a range of subjective self-report questionnaires to latent constructs including compulsive behaviour and intrusive thought and, in turn, to objective measures of the balance between model-based and model-free behaviour.

    Article  PubMed  PubMed Central  Google Scholar 

  246. Chamberlain, S. R., Leppink, E. W., Redden, S. A. & Grant, J. E. Are obsessive — compulsive symptoms impulsive, compulsive or both? Compr. Psychiatry 68, 111–118 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  247. Burton, C. L. et al. Heritability of obsessive-compulsive trait dimensions in youth from the general population. Transl. Psychiatry https://doi.org/10.1038/s41398-018-0249-9 (2018).

Download references

Acknowledgements

D.B. is supported by a UKRI grant (MR/W019647/1). P.B. is supported by a Sir Henry Postdoctoral Research Fellowship (Grant 204727/Z/16/Z). The authors thank B. Everitt for his insightful comments on the final draft of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Trevor W. Robbins.

Ethics declarations

Competing interests

T.W.R. declares consultancies with Cambridge Cognition and Supernus and a research grant from Shionogi. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks Casey Helpern, who co-reviewed with Wonkyung Choi; Christopher Pittenger; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Arbitration

A resolution of conflict between alternative strategies.

Attractor network

A computational term referring to a network of neuronal nodes, often recurrently connected, whose dynamic relations over time settle into a stable pattern of activity.

Brodmann areas

Regions of the brain defined in terms of histological characteristics and denoted by numbers, such as BA 9.

Checking

Repeated monitoring of behaviour caused in part by uncertainty.

Chemogenetics

A method of manipulating neuronal activity in specific circuits using otherwise inert drugs that activate engineered receptors expressed in identified (genetically or otherwise) cells.

Cingulo-opercular networks

A neural system that includes the cingulate cortex, inferior prefrontal cortex and insula that is implicated in executive functions and thought to be a major mediator of urgency affecting action.

Cognitive-behavioural therapy

A general set of psychological treatments in which patients are instructed to adhere to certain cognitive strategies to combat their mental symptoms. In OCD, often combined with a special technique of ‘response prevention’.

Cognitive control

A set of executive operations that optimize behaviour mediated in part by frontal lobe circuitry; almost synonymous with executive control.

Compulsions

Strong feelings of wanting or having to do something repeatedly that are difficult to control.

Compulsivity

A trait that refers to a tendency towards repetitive behaviour.

Conditioned reinforcers

Conditioned stimuli (associated with a primary reward) that reinforce those actions by which they are produced.

Contingency degradation

An experimental manipulation that uncouples the predictive relationship or correlation between an instrumental action and its outcome or consequence. Persistent instrumental responding then indicates mediation by habitual (stimulus–response) tendencies.

Coping

A response, whether behavioural, cognitive or neuroendocrine, associated with reducing stress via negative reinforcement.

Craving

An overwhelming desire for a drug, frequently expressed by individuals with substance use disorder as ‘I want’.

Deep brain stimulation

A form of invasive neuromodulation by implanted electrodes increasingly used in some mental health disorders, including OCD and addiction, as well as its original application to Parkinson disease.

Dorsal striatum

That part of the basal ganglia of the brain that comprises the dorsal caudate nucleus and dorsal putamen in primates and their homologues in rodents.

Dorsolateral striatum

That region of the striatum in rodents generally assumed to be homologous with part of the primate putamen and, alongside the infralimbic cortex, central nucleus of the amygdala and pre/motor cortex, part of the so-called habit system.

Dorsomedial striatum

That region of the striatum in rodents generally assumed to be homologous with part of the primate caudate nucleus and, alongside the prelimbic cortex and the basolateral amygdala, part of the so-called goal-directed system.

Excitotoxic lesions

Cell-body-specific lesions of brain regions, produced by glutamatergic agonist drugs that spare nerve fibres of passage (connections).

Executive function

A set of cognitive operations, including working memory, attention, inhibitory control, cognitive flexibility and monitoring, that optimize behaviour. Largely synonymous with cognitive control.

Fronto-parietal networks

A neural system, especially including the lateral prefrontal cortex and its connections with the parietal cortex, thought to be a major component of the executive control system.

Glutamate-to-GABA balance

Hypothetical relationship between excitatory (glutamate) and local inhibitory (GABA) neurons in the cerebral cortex.

Goal devaluation

An experimental manipulation that reduces the value of a goal or an outcome produced by instrumental behaviour (such as reducing food value by satiation or poisoning). Persistent instrumental responding assessed under extinction conditions then indicates performance mediation by habitual (stimulus–response) tendencies.

Goal-directed behaviour

A sequence of purposeful, motivated instrumental actions whose initiation is predicated on a clear conscious representation of a goal.

Grey matter volume

The volume of nerve cells established by voxel-based morphometric methods in neuroimaging.

Habits

Instrumental responses generally elicited by internal or external environmental stimuli in the absence of any previous conscious representation of the primary goal.

Homologue

Neuroanatomical structure of common developmental and evolutionary history over species.

Impulsivity

A trait that refers to a tendency to premature, risky behaviour.

Incentive habit

A habit in which a response has acquired inherent motivational value (and hence can be a goal on its own) through its development under the pavlovian incentive influence of conditioned reinforcers (either exteroceptive or interoceptive) that enable the incentive value of pavlovian cues to transfer to the setting-bound (stimulus–response) response itself.

Incentive motivation

Invigoration of instrumental responding either by conditioned stimuli (pavlovian–instrumental transfer) or by incremental changes in value of the primary goal.

Negative urgency

An aversive motivational state associated with urges to respond.

Obsessions

Persistent intrusive lines of thought, often aversive.

Optogenetic

A method of manipulating neuronal activity in specific circuits using the photostimulation of a light-sensitive channel ectopically expressed in genetically or otherwise identified cells.

Ordering

Imposing organization on a scene or objects.

Positron emission tomography

Neuroimaging technique using radioactive tracers to detect specific chemicals (often receptors) and metabolic or chemical changes in brain.

Repetitive transcranial magnetic stimulation

A form of non-invasive neuromodulation using magnetic stimulation applied to the scalp.

Resting state functional connectivity

A particular form of functional MRI using inactive participants performing no task. Correlations of resultant fluctuations of the oxygenated haemoglobin response are made across functionally coherent brain regions to produce a proxy measure of connectivity. Hypoconnectivity, diminished blood-oxygen-level-dependent responses; hyperconnectivity, enhanced blood-oxygen-level-dependent responses.

Schedule-induced polydipsia

Excessive drinking caused by intermittent, but predictable, delivery of small food rewards, generally in food-deprived rodents.

Serotonin selective reuptake inhibitor

A class of drugs used for the treatment of depression and OCD that selectively inhibit serotonin reuptake and bind directly to the BDNF trkB receptor.

Striosomal

Refers to one of the two complementary neurochemically defined compartments within the striatum visualized by staining for immunocytochemical markers (that receives limbic inputs).

Symptom provocation

Attempt to generate the symptoms of a patient by specific environmental challenge or by presenting a stimulus associated with those symptoms (for example, by visual imagery or touch).

Trait

A behavioural disposition, generally assumed to be of genetic origin.

Trichotillomania

The continual pulling out of one’s own hair, often resulting in baldness.

Urge

An urgent feeling (often called an impulse) that a behaviour must be performed imminently.

Ventral striatum

That part of the basal ganglia of the brain comprising the nucleus accumbens (including both its core and shell sub-regions), the olfactory tubercle and sometimes (in primates) the ventral caudate and ventral putamen. The region is often defined in terms of its anatomical projections from the limbic system, associated with emotional behaviour.

Voxel-based morphometry

A neuroimaging method that investigates focal differences in brain anatomy.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robbins, T.W., Banca, P. & Belin, D. From compulsivity to compulsion: the neural basis of compulsive disorders. Nat. Rev. Neurosci. 25, 313–333 (2024). https://doi.org/10.1038/s41583-024-00807-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-024-00807-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing