Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

A multiple hits hypothesis for memory dysfunction in Parkinson disease

Abstract

Cognitive disorders are increasingly recognized in Parkinson disease (PD), even in early disease stages, and memory is one of the most affected cognitive domains. Classically, hippocampal cholinergic system dysfunction was associated with memory disorders, whereas nigrostriatal dopaminergic system impairment was considered responsible for executive deficits. Evidence from PD studies now supports involvement of the amygdala, which modulates emotional attribution to experiences. Here, we propose a tripartite model including the hippocampus, striatum and amygdala as key structures for cognitive disorders in PD. First, the anatomo-functional relationships of these structures are explored and experimental evidence supporting their role in cognitive dysfunction in PD is summarized. We then discuss the potential role of α-synuclein, a pathological hallmark of PD, in the tripartite memory system as a key mechanism in the pathogenesis of memory disorders in the disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Long-term memory organization.
Fig. 2: The tripartite model of memory.
Fig. 3: Cholinergic and dopaminergic systems in a physiological condition versus PD.
Fig. 4: The progressive involvement of α-synuclein and Lewy bodies in the memory system in PD.
Fig. 5: α-Synuclein toxicity mechanisms.

Similar content being viewed by others

References

  1. Parkinson, J. An essay on the shaking palsy. 1817. J. Neuropsychiatry Clin. Neurosci. 14, 223–236 (2002).

    PubMed  Google Scholar 

  2. Trousseau, A. Lectures on Clinical Medicine Delivered at the Hôtel-Dieu, Paris (ed. Bazire, P. V.) (The New Sydenham Society, 1868).

  3. Aarsland, D. et al. Cognitive decline in Parkinson disease. Nat. Rev. Neurol. 13, 217–231 (2017).

    PubMed  PubMed Central  Google Scholar 

  4. Heinzel, S. et al. Update of the MDS research criteria for prodromal Parkinson’s disease. Mov. Disord. 34, 1464–1470 (2019).

    PubMed  Google Scholar 

  5. Fengler, S. et al. Cognitive changes in prodromal Parkinson’s disease: a review. Mov. Disord. 32, 1655–1666 (2017).

    PubMed  Google Scholar 

  6. Pedersen, K. F., Larsen, J. P., Tysnes, O. B. & Alves, G. Natural course of mild cognitive impairment in Parkinson disease: a 5-year population-based study. Neurology 88, 767–774 (2017).

    PubMed  Google Scholar 

  7. Domellöf, M. E., Ekman, U., Forsgren, L. & Elgh, E. Cognitive function in the early phase of Parkinson’s disease, a five-year follow-up. Acta Neurol. Scand. 132, 79–88 (2015).

    PubMed  Google Scholar 

  8. Foubert-Samier, A. et al. Cognitive and functional changes in prediagnostic phase of Parkinson disease: a population-based study. Parkinsonism Relat. Disord. 79, 40–46 (2020).

    PubMed  Google Scholar 

  9. Dickson, D. W. Neuropathology of Parkinson disease. Parkinsonism Relat. Disord. 46, S30–S33 (2018).

    PubMed  Google Scholar 

  10. Calabresi, P. et al. Alpha-synuclein in Parkinson’s disease and other synucleinopathies: from overt neurodegeneration back to early synaptic dysfunction. Cell Death Dis. 14, 176 (2023).

    PubMed  PubMed Central  Google Scholar 

  11. Whitehouse, P. J., Hedreen, J. C., White, C. L. 3rd & Price, D. L. Basal forebrain neurons in the dementia of Parkinson disease. Ann. Neurol. 13, 243–248 (1983).

    CAS  PubMed  Google Scholar 

  12. Rinne, J. O. et al. Cognitive impairment and the brain dopaminergic system in Parkinson disease: [18F]fluorodopa positron emission tomographic study. Arch. Neurol. 57, 470–475 (2000).

    CAS  PubMed  Google Scholar 

  13. Calabresi, P., Picconi, B., Parnetti, L. & Di Filippo, M. A convergent model for cognitive dysfunctions in Parkinson’s disease: the critical dopamine-acetylcholine synaptic balance. Lancet Neurol. 5, 974–983 (2006).

    CAS  PubMed  Google Scholar 

  14. McGaugh, J. L., Cahill, L. & Roozendaal, B. Involvement of the amygdala in memory storage: interaction with other brain systems. Proc. Natl Acad. Sci. USA 93, 13508–13514 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Horsager, J. et al. Brain-first versus body-first Parkinson’s disease: a multimodal imaging case-control study. Brain 143, 3077–3088 (2020).

    PubMed  Google Scholar 

  16. Horsager, J., Knudsen, K. & Sommerauer, M. Clinical and imaging evidence of brain-first and body-first Parkinson’s disease. Neurobiol. Dis. 164, 105626 (2022).

    CAS  PubMed  Google Scholar 

  17. McDonald, R. J. & White, N. M. A triple dissociation of memory systems: hippocampus, amygdala, and dorsal striatum. Behav. Neurosci. 107, 3–22 (1993).

    CAS  PubMed  Google Scholar 

  18. Scoville, W. B. & Milner, B. Loss of recent memory after bilateral hippocampal lesions. J. Neurol. Neurosurg. Psychiatry 20, 11–21 (1957).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Thiebaut de Schotten, M. et al. From phineas gage and monsieur leborgne to H.M.: revisiting disconnection syndromes. Cereb. Cortex 25, 4812–4827 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Di Filippo, M. & Calabresi, P. Ischemic bilateral hippocampal dysfunction during transient global amnesia. Neurology 69, 493 (2007).

    PubMed  Google Scholar 

  21. Squire, L. R. & Dede, A. J. Conscious and unconscious memory systems. Cold Spring Harb. Perspect. Biol. 7, a021667 (2015).

    PubMed  PubMed Central  Google Scholar 

  22. Brodal, P. The Central Nervous System (Oxford Academic, 2016).

  23. Duvernoy, H., Cattin, F. & Risold, P.-Y. The Human Hippocampus: Functional Anatomy, Vascularization and Serial Sections with MRI 5–38 (Springer Berlin Heidelberg, 2013).

  24. Schaffer, K. Beitrag zur histologie der ammonshornformation. Arch. für mikroskopische Anat. 39, 611–632 (1892).

    Google Scholar 

  25. Cembrowski, M. S. & Spruston, N. Heterogeneity within classical cell types is the rule: lessons from hippocampal pyramidal neurons. Nat. Rev. Neurosci. 20, 193–204 (2019).

    CAS  PubMed  Google Scholar 

  26. Olbrich, H. G. & Braak, H. Ratio of pyramidal cells versus non-pyramidal cells in sector CA1 of the human Ammon’s horn. Anat. Embryol. 173, 105–110 (1985).

    CAS  Google Scholar 

  27. Pelkey, K. A. et al. Hippocampal GABAergic inhibitory interneurons. Physiol. Rev. 97, 1619–1747 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Nicoll, R. A. A brief history of long-term potentiation. Neuron 93, 281–290 (2017).

    CAS  PubMed  Google Scholar 

  29. Calabresi, P., Picconi, B., Tozzi, A. & Ghiglieri, V. Interaction between basal ganglia and limbic circuits in learning and memory processes. Parkinsonism Relat. Disord. 22, S65–68 (2016).

    PubMed  Google Scholar 

  30. Lüscher, C. & Malenka, R. C. NMDA receptor-dependent long-term potentiation and long-term depression (LTP/LTD). Cold Spring Harb. Perspect. Biol. 4, a005710 (2012).

    PubMed  PubMed Central  Google Scholar 

  31. Litvan, I., Mohr, E., Williams, J., Gomez, C. & Chase, T. N. Differential memory and executive functions in demented patients with Parkinson’s and Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry 54, 25–29 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Burton, E. J., McKeith, I. G., Burn, D. J., Williams, E. D. & O’Brien, J. T. Cerebral atrophy in Parkinson’s disease with and without dementia: a comparison with Alzheimer’s disease, dementia with Lewy bodies and controls. Brain 127, 791–800 (2004).

    PubMed  Google Scholar 

  33. Beyer, M. K., Larsen, J. P. & Aarsland, D. Gray matter atrophy in Parkinson disease with dementia and dementia with Lewy bodies. Neurology 69, 747–754 (2007).

    PubMed  Google Scholar 

  34. Weintraub, D. et al. Cognitive performance and neuropsychiatric symptoms in early, untreated Parkinson’s disease. Mov. Disord. 30, 919–927 (2015).

    PubMed  PubMed Central  Google Scholar 

  35. Filippi, M. et al. Tracking cortical changes throughout cognitive decline in Parkinson’s disease. Mov. Disord. 35, 1987–1998 (2020).

    PubMed  Google Scholar 

  36. Mak, E. et al. Baseline and longitudinal grey matter changes in newly diagnosed Parkinson’s disease: ICICLE-PD study. Brain 138, 2974–2986 (2015).

    PubMed  PubMed Central  Google Scholar 

  37. La, C. et al. Hippocampal CA1 subfield predicts episodic memory impairment in Parkinson’s disease. Neuroimage Clin. 23, 101824 (2019).

    PubMed  PubMed Central  Google Scholar 

  38. Broussard, J. I. et al. Dopamine regulates aversive contextual learning and associated in vivo synaptic plasticity in the hippocampus. Cell Rep. 14, 1930–1939 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kempadoo, K. A., Mosharov, E. V., Choi, S. J., Sulzer, D. & Kandel, E. R. Dopamine release from the locus coeruleus to the dorsal hippocampus promotes spatial learning and memory. Proc. Natl Acad. Sci. USA 113, 14835–14840 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Lee, J. Y. et al. Dopamine facilitates associative memory encoding in the entorhinal cortex. Nature 598, 321–326 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Huang, Y. Y. & Kandel, E. R. D1/D5 receptor agonists induce a protein synthesis-dependent late potentiation in the CA1 region of the hippocampus. Proc. Natl Acad. Sci. USA 92, 2446–2450 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Titulaer, J. et al. The importance of ventral hippocampal dopamine and norepinephrine in recognition memory. Front. Behav. Neurosci. 15, 667244 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Bonito-Oliva, A. et al. Cognitive impairment and dentate gyrus synaptic dysfunction in experimental parkinsonism. Biol. Psychiatry 75, 701–710 (2014).

    CAS  PubMed  Google Scholar 

  44. Sala, A. et al. In vivo human molecular neuroimaging of dopaminergic vulnerability along the Alzheimer’s disease phases. Alzheimers Res. Ther. 13, 187 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Calabresi, P., Castrioto, A., Di Filippo, M. & Picconi, B. New experimental and clinical links between the hippocampus and the dopaminergic system in Parkinson’s disease. Lancet Neurol. 12, 811–821 (2013).

    CAS  PubMed  Google Scholar 

  46. Whitehouse, P. J., Price, D. L., Clark, A. W., Coyle, J. T. & DeLong, M. R. Alzheimer disease: evidence for selective loss of cholinergic neurons in the nucleus basalis. Ann. Neurol. 10, 122–126 (1981).

    CAS  PubMed  Google Scholar 

  47. Francis, P. T., Palmer, A. M., Snape, M. & Wilcock, G. K. The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J. Neurol. Neurosurg. Psychiatry 66, 137–147 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Hall, H. et al. Hippocampal Lewy pathology and cholinergic dysfunction are associated with dementia in Parkinson’s disease. Brain 137, 2493–2508 (2014).

    PubMed  Google Scholar 

  49. Petrou, M. et al. In vivo imaging of human cholinergic nerve terminals with (–)-5-18F-fluoroethoxybenzovesamicol: biodistribution, dosimetry, and tracer kinetic analyses. J. Nucl. Med. 55, 396–404 (2014).

    CAS  PubMed  Google Scholar 

  50. van der Zee, S., Müller, M., Kanel, P., van Laar, T. & Bohnen, N. I. Cholinergic denervation patterns across cognitive domains in Parkinson’s disease. Mov. Disord. 36, 642–650 (2021).

    PubMed  Google Scholar 

  51. van der Zee, S. et al. Altered cholinergic innervation in de novo Parkinson’s disease with and without cognitive impairment. Mov. Disord. 37, 713–723 (2022).

    PubMed  PubMed Central  Google Scholar 

  52. Legault-Denis, C. et al. Normal cognition in Parkinson’s disease may involve hippocampal cholinergic compensation: an exploratory PET imaging study with [18F]-FEOBV. Parkinsonism Relat. Disord. 91, 162–166 (2021).

    CAS  PubMed  Google Scholar 

  53. Jin, X. & Costa, R. M. Start/stop signals emerge in nigrostriatal circuits during sequence learning. Nature 466, 457–462 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Calabresi, P. & Di Filippo, M. Neuroscience: brain’s traffic lights. Nature 466, 449 (2010).

    CAS  PubMed  Google Scholar 

  55. Gai, W. P., Halliday, G. M., Blumbergs, P. C., Geffen, L. B. & Blessing, W. W. Substance P-containing neurons in the mesopontine tegmentum are severely affected in Parkinson’s disease. Brain 114, 2253–2267 (1991).

    PubMed  Google Scholar 

  56. Lotharius, J. & Brundin, P. Pathogenesis of Parkinson’s disease: dopamine, vesicles and α-synuclein. Nat. Rev. Neurosci. 3, 932–942 (2002).

    CAS  PubMed  Google Scholar 

  57. Chen, S. Y. et al. Parcellation of the striatal complex into dorsal and ventral districts. Proc. Natl Acad. Sci. USA 117, 7418–7429 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Joel, D. & Weiner, I. The connections of the dopaminergic system with the striatum in rats and primates: an analysis with respect to the functional and compartmental organization of the striatum. Neuroscience 96, 451–474 (2000).

    CAS  PubMed  Google Scholar 

  59. Hunnicutt, B. J. et al. A comprehensive excitatory input map of the striatum reveals novel functional organization. eLife 5, e19103 (2016).

    PubMed  PubMed Central  Google Scholar 

  60. Thorn, C. A., Atallah, H., Howe, M. & Graybiel, A. M. Differential dynamics of activity changes in dorsolateral and dorsomedial striatal loops during learning. Neuron 66, 781–795 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Ashby, F. G., Turner, B. O. & Horvitz, J. C. Cortical and basal ganglia contributions to habit learning and automaticity. Trends Cogn. Sci. 14, 208–215 (2010).

    PubMed  PubMed Central  Google Scholar 

  62. Graveland, G. A. & DiFiglia, M. The frequency and distribution of medium-sized neurons with indented nuclei in the primate and rodent neostriatum. Brain Res. 327, 307–311 (1985).

    CAS  PubMed  Google Scholar 

  63. Dautan, D. et al. A major external source of cholinergic innervation of the striatum and nucleus accumbens originates in the brainstem. J. Neurosci. 34, 4509–4518 (2014).

    PubMed  PubMed Central  Google Scholar 

  64. Burke, D. A., Rotstein, H. G. & Alvarez, V. A. Striatal local circuitry: a new framework for lateral inhibition. Neuron 96, 267–284 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Pisani, A., Bernardi, G., Ding, J. & Surmeier, D. J. Re-emergence of striatal cholinergic interneurons in movement disorders. Trends Neurosci. 30, 545–553 (2007).

    CAS  PubMed  Google Scholar 

  66. Izzo, P. N. & Bolam, J. P. Cholinergic synaptic input to different parts of spiny striatonigral neurons in the rat. J. Comp. Neurol. 269, 219–234 (1988).

    CAS  PubMed  Google Scholar 

  67. Ghiglieri, V., Sgobio, C., Costa, C., Picconi, B. & Calabresi, P. Striatum-hippocampus balance: from physiological behavior to interneuronal pathology. Prog. Neurobiol. 94, 102–114 (2011).

    PubMed  Google Scholar 

  68. Calabresi, P., Centonze, D., Gubellini, P., Pisani, A. & Bernardi, G. Acetylcholine-mediated modulation of striatal function. Trends Neurosci. 23, 120–126 (2000).

    CAS  PubMed  Google Scholar 

  69. Guo, Q. et al. Whole-brain mapping of inputs to projection neurons and cholinergic interneurons in the dorsal striatum. PLoS One 10, e0123381 (2015).

    PubMed  PubMed Central  Google Scholar 

  70. Calabresi, P., Picconi, B., Tozzi, A., Ghiglieri, V. & Di Filippo, M. Direct and indirect pathways of basal ganglia: a critical reappraisal. Nat. Neurosci. 17, 1022–1030 (2014).

    CAS  PubMed  Google Scholar 

  71. Perez, S. et al. Striatum expresses region-specific plasticity consistent with distinct memory abilities. Cell Rep. 38, 110521 (2022).

    CAS  PubMed  Google Scholar 

  72. Calabresi, P., Centonze, D., Gubellini, P., Pisani, A. & Bernardi, G. Endogenous ACh enhances striatal NMDA-responses via M1-like muscarinic receptors and PKC activation. Eur. J. Neurosci. 10, 2887–2895 (1998).

    CAS  PubMed  Google Scholar 

  73. Aoki, S. et al. Cholinergic interneurons in the rat striatum modulate substitution of habits. Eur. J. Neurosci. 47, 1194–1205 (2018).

    PubMed  PubMed Central  Google Scholar 

  74. Ahmed, N. Y. et al. Er81 transcription factor fine-tunes striatal cholinergic interneuron activity and drives habit formation. J. Neurosci. 41, 4392–4409 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Cai, Y., Nielsen, B. E., Boxer, E. E., Aoto, J. & Ford, C. P. Loss of nigral excitation of cholinergic interneurons contributes to parkinsonian motor impairments. Neuron 109, 1137–1149.e5 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Sanchez-Catasus, C. A., Bohnen, N. I., D’Cruz, N. & Müller, M. Striatal acetylcholine-dopamine imbalance in Parkinson disease: in vivo neuroimaging study with dual-tracer PET and dopaminergic PET-informed correlational tractography. J. Nucl. Med. 63, 438–445 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Jokinen, P. et al. Impaired cognitive performance in Parkinson’s disease is related to caudate dopaminergic hypofunction and hippocampal atrophy. Parkinsonism Relat. Disord. 15, 88–93 (2009).

    PubMed  Google Scholar 

  78. Müller, M. L. & Bohnen, N. I. Cholinergic dysfunction in Parkinson’s disease. Curr. Neurol. Neurosci. Rep. 13, 377 (2013).

    PubMed  PubMed Central  Google Scholar 

  79. Xia, Y. et al. Reduced cortical cholinergic innervation measured using [18F]-FEOBV PET imaging correlates with cognitive decline in mild cognitive impairment. Neuroimage Clin. 34, 102992 (2022).

    PubMed  PubMed Central  Google Scholar 

  80. Emre, M. et al. Rivastigmine for dementia associated with Parkinson’s disease. N. Engl. J. Med. 351, 2509–2518 (2004).

    CAS  PubMed  Google Scholar 

  81. Dubois, B. et al. Donepezil in Parkinson’s disease dementia: a randomized, double-blind efficacy and safety study. Mov. Disord. 27, 1230–1238 (2012).

    CAS  PubMed  Google Scholar 

  82. Hiraoka, K. et al. Cholinergic deficit and response to donepezil therapy in Parkinson’s disease with dementia. Eur. Neurol. 68, 137–143 (2012).

    CAS  PubMed  Google Scholar 

  83. Bohnen, N. I. et al. Cholinergic system changes of falls and freezing of gait in Parkinson’s disease. Ann. Neurol. 85, 538–549 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Poldrack, R. A. & Packard, M. G. Competition among multiple memory systems: converging evidence from animal and human brain studies. Neuropsychologia 41, 245–251 (2003).

    PubMed  Google Scholar 

  85. Moser, M. B., Rowland, D. C. & Moser, E. I. Place cells, grid cells, and memory. Cold Spring Harb. Perspect. Biol. 7, a021808 (2015).

    PubMed  PubMed Central  Google Scholar 

  86. Montagrin, A., Saiote, C. & Schiller, D. The social hippocampus. Hippocampus 28, 672–679 (2018).

    PubMed  Google Scholar 

  87. Brasted, P. J., Humby, T., Dunnett, S. B. & Robbins, T. W. Unilateral lesions of the dorsal striatum in rats disrupt responding in egocentric space. J. Neurosci. 17, 8919–8926 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Ferbinteanu, J. The hippocampus and dorsolateral striatum integrate distinct types of memories through time and space, respectively. J. Neurosci. 40, 9055–9065 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Knowlton, B. J., Mangels, J. A. & Squire, L. R. A neostriatal habit learning system in humans. Science 273, 1399–1402 (1996).

    CAS  PubMed  Google Scholar 

  90. White, N. M., Packard, M. G. & McDonald, R. J. Dissociation of memory systems: the story unfolds. Behav. Neurosci. 127, 813–834 (2013).

    PubMed  Google Scholar 

  91. Delcasso, S. et al. Functional relationships between the hippocampus and dorsomedial striatum in learning a visual scene-based memory task in rats. J. Neurosci. 34, 15534–15547 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Caproni, S. et al. Subclinical visuospatial impairment in Parkinson’s disease: the role of basal ganglia and limbic system. Front. Neurol. 5, 152 (2014).

    PubMed  PubMed Central  Google Scholar 

  93. Nagano-Saito, A. et al. Effect of mild cognitive impairment on the patterns of neural activity in early Parkinson’s disease. Neurobiol. Aging 35, 223–231 (2014).

    PubMed  Google Scholar 

  94. Pourzinal, D. et al. Hippocampal correlates of episodic memory in Parkinson’s disease: a systematic review of magnetic resonance imaging studies. J. Neurosci. Res. 99, 2097–2116 (2021).

    CAS  PubMed  Google Scholar 

  95. Nagano-Saito, A. et al. Cerebral atrophy and its relation to cognitive impairment in Parkinson disease. Neurology 64, 224–229 (2005).

    CAS  PubMed  Google Scholar 

  96. Weintraub, D. et al. Neurodegeneration across stages of cognitive decline in Parkinson disease. Arch. Neurol. 68, 1562–1568 (2011).

    PubMed  PubMed Central  Google Scholar 

  97. Mesulam, M. M. From sensation to cognition. Brain 121, 1013–1052 (1998).

    PubMed  Google Scholar 

  98. Catani, M., Dell’acqua, F. & Thiebaut de Schotten, M. A revised limbic system model for memory, emotion and behaviour. Neurosci. Biobehav. Rev. 37, 1724–1737 (2013).

    PubMed  Google Scholar 

  99. Terranova, J. I. et al. Hippocampal-amygdala memory circuits govern experience-dependent observational fear. Neuron 110, 1416–1431.e3 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Janak, P. H. & Tye, K. M. From circuits to behaviour in the amygdala. Nature 517, 284–292 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Ressler, K. J. Amygdala activity, fear, and anxiety: modulation by stress. Biol. Psychiatry 67, 1117–1119 (2010).

    PubMed  PubMed Central  Google Scholar 

  102. Adolphs, R. What does the amygdala contribute to social cognition? Ann. N. Y. Acad. Sci. 1191, 42–61 (2010).

    PubMed  PubMed Central  Google Scholar 

  103. Inman, C. S. et al. Human amygdala stimulation effects on emotion physiology and emotional experience. Neuropsychologia 145, 106722 (2020).

    PubMed  Google Scholar 

  104. Anglada-Figueroa, D. & Quirk, G. J. Lesions of the basal amygdala block expression of conditioned fear but not extinction. J. Neurosci. 25, 9680–9685 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Bravo-Rivera, C., Roman-Ortiz, C., Brignoni-Perez, E., Sotres-Bayon, F. & Quirk, G. J. Neural structures mediating expression and extinction of platform-mediated avoidance. J. Neurosci. 34, 9736–9742 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Schrag, A. & Taddei, R. N. Depression and anxiety in Parkinson’s disease. Int. Rev. Neurobiol. 133, 623–655 (2017).

    PubMed  Google Scholar 

  107. Tovote, P., Fadok, J. P. & Lüthi, A. Neuronal circuits for fear and anxiety. Nat. Rev. Neurosci. 16, 317–331 (2015).

    CAS  PubMed  Google Scholar 

  108. Jhang, J. et al. Anterior cingulate cortex and its input to the basolateral amygdala control innate fear response. Nat. Commun. 9, 2744 (2018).

    PubMed  PubMed Central  Google Scholar 

  109. Vriend, C. et al. A smaller amygdala is associated with anxiety in Parkinson’s disease: a combined FreeSurfer-VBM study. J. Neurol. Neurosurg. Psychiatry 87, 493–500 (2016).

    PubMed  Google Scholar 

  110. Wee, N. et al. Neural correlates of anxiety symptoms in mild Parkinson’s disease: a prospective longitudinal voxel-based morphometry study. J. Neurol. Sci. 371, 131–136 (2016).

    PubMed  Google Scholar 

  111. Carey, G. et al. Anxiety in Parkinson’s disease is associated with changes in the brain fear circuit. Parkinsonism Relat. Disord. 80, 89–97 (2020).

    PubMed  Google Scholar 

  112. Criaud, M. et al. Anxiety in Parkinson’s disease: abnormal resting activity and connectivity. Brain Res. 1753, 147235 (2021).

    CAS  PubMed  Google Scholar 

  113. Carey, G. et al. Neuroimaging of anxiety in Parkinson’s disease: a systematic review. Mov. Disord. 36, 327–339 (2021).

    PubMed  Google Scholar 

  114. Borghammer, P. et al. Neuropathological evidence of body-first vs. brain-first Lewy body disease. Neurobiol. Dis. 161, 105557 (2021).

    CAS  PubMed  Google Scholar 

  115. Kim, J. J., Lee, H. J., Han, J. S. & Packard, M. G. Amygdala is critical for stress-induced modulation of hippocampal long-term potentiation and learning. J. Neurosci. 21, 5222–5228 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Schwabe, L. Stress and the engagement of multiple memory systems: integration of animal and human studies. Hippocampus 23, 1035–1043 (2013).

    PubMed  Google Scholar 

  117. Burré, J. The synaptic function of α-synuclein. J. Parkinsons Dis. 5, 699–713 (2015).

    PubMed  PubMed Central  Google Scholar 

  118. Ghiglieri, V., Calabrese, V. & Calabresi, P. Alpha-synuclein: from early synaptic dysfunction to neurodegeneration. Front. Neurol. 9, 295 (2018).

    PubMed  PubMed Central  Google Scholar 

  119. Picconi, B., Piccoli, G. & Calabresi, P. Synaptic dysfunction in Parkinson’s disease. Adv. Exp. Med. Biol. 970, 553–572 (2012).

    CAS  PubMed  Google Scholar 

  120. Spillantini, M. G., Crowther, R. A., Jakes, R., Hasegawa, M. & Goedert, M. α-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with lewy bodies. Proc. Natl Acad. Sci. USA 95, 6469–6473 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Marino, G., Calabresi, P. & Ghiglieri, V. Alpha-synuclein and cortico-striatal plasticity in animal models of Parkinson disease. Handb. Clin. Neurol. 184, 153–166 (2022).

    PubMed  Google Scholar 

  122. Bertrand, E. et al. Limbic neuropathology in idiopathic Parkinson’s disease with concomitant dementia. Folia Neuropathol. 42, 141–150 (2004).

    PubMed  Google Scholar 

  123. Braak, H. et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging 24, 197–211 (2003).

    PubMed  Google Scholar 

  124. Kim, S. et al. Transneuronal propagation of pathologic α-synuclein from the gut to the brain models Parkinson’s disease. Neuron 103, 627–641.e7 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Uemura, N. et al. Inoculation of α-synuclein preformed fibrils into the mouse gastrointestinal tract induces Lewy body-like aggregates in the brainstem via the vagus nerve. Mol. Neurodegener. 13, 21 (2018).

    PubMed  PubMed Central  Google Scholar 

  126. Stoyka, L. E. et al. Behavioral defects associated with amygdala and cortical dysfunction in mice with seeded α-synuclein inclusions. Neurobiol. Dis. 134, 104708 (2020).

    CAS  PubMed  Google Scholar 

  127. Pieperhoff, P. et al. Regional changes of brain structure during progression of idiopathic Parkinson’s disease — a longitudinal study using deformation based morphometry. Cortex 151, 188–210 (2022).

    PubMed  Google Scholar 

  128. Pfeiffer, H. C., Løkkegaard, A., Zoetmulder, M., Friberg, L. & Werdelin, L. Cognitive impairment in early-stage non-demented Parkinson’s disease patients. Acta Neurol. Scand. 129, 307–318 (2014).

    CAS  PubMed  Google Scholar 

  129. Lashuel, H. A., Overk, C. R., Oueslati, A. & Masliah, E. The many faces of α-synuclein: from structure and toxicity to therapeutic target. Nat. Rev. Neurosci. 14, 38–48 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Spillantini, M. G. et al. α-Synuclein in Lewy bodies. Nature 388, 839–840 (1997).

    CAS  PubMed  Google Scholar 

  131. Baba, M. et al. Aggregation of alpha-synuclein in Lewy bodies of sporadic Parkinson’s disease and dementia with Lewy bodies. Am. J. Pathol. 152, 879–884 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Roberts, R. F., Wade-Martins, R. & Alegre-Abarrategui, J. Direct visualization of alpha-synuclein oligomers reveals previously undetected pathology in Parkinson’s disease brain. Brain 138, 1642–1657 (2015).

    PubMed  PubMed Central  Google Scholar 

  133. Sekiya, H. et al. Discrepancy between distribution of alpha-synuclein oligomers and Lewy-related pathology in Parkinson’s disease. Acta Neuropathol. Commun. 10, 133 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Cascella, R. et al. The release of toxic oligomers from α-synuclein fibrils induces dysfunction in neuronal cells. Nat. Commun. 12, 1814 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Alam, P., Bousset, L., Melki, R. & Otzen, D. E. α-Synuclein oligomers and fibrils: a spectrum of species, a spectrum of toxicities. J. Neurochem. 150, 522–534 (2019).

    CAS  PubMed  Google Scholar 

  136. Alegre-Abarrategui, J. et al. Selective vulnerability in α-synucleinopathies. Acta Neuropathol. 138, 681–704 (2019).

    PubMed  PubMed Central  Google Scholar 

  137. Chen, L. et al. Synaptic location is a determinant of the detrimental effects of α-synuclein pathology to glutamatergic transmission in the basolateral amygdala. eLife 11, e78055 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Torres, E. R. S. et al. Alpha-synuclein pathology, microgliosis, and parvalbumin neuron loss in the amygdala associated with enhanced fear in the Thy1-aSyn model of Parkinson’s disease. Neurobiol. Dis. 158, 105478 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Schell, H., Boden, C., Chagas, A. M. & Kahle, P. J. Impaired c-Fos and polo-like kinase 2 induction in the limbic system of fear-conditioned α-synuclein transgenic mice. PLoS One 7, e50245 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Kasongo, D. W., de Leo, G., Vicario, N., Leanza, G. & Legname, G. Chronic α-synuclein accumulation in rat hippocampus induces lewy bodies formation and specific cognitive impairments. eNeuro 7, 10.1523/ENEURO.0009-20.2020 (2020).

  141. Costa, C. et al. Mechanisms underlying the impairment of hippocampal long-term potentiation and memory in experimental Parkinson’s disease. Brain 135, 1884–1899 (2012).

    PubMed  Google Scholar 

  142. Flores-Cuadrado, A., Ubeda-Bañon, I., Saiz-Sanchez, D., de la Rosa-Prieto, C. & Martinez-Marcos, A. Hippocampal α-synuclein and interneurons in Parkinson’s disease: data from human and mouse models. Mov. Disord. 31, 979–988 (2016).

    CAS  PubMed  Google Scholar 

  143. Liu, A. K. L. et al. Hippocampal CA2 Lewy pathology is associated with cholinergic degeneration in Parkinson’s disease with cognitive decline. Acta Neuropathol. Commun. 7, 61 (2019).

    PubMed  PubMed Central  Google Scholar 

  144. Froula, J. M. et al. α-Synuclein fibril-induced paradoxical structural and functional defects in hippocampal neurons. Acta Neuropathol. Commun. 6, 35 (2018).

    PubMed  PubMed Central  Google Scholar 

  145. Yagishita, S. et al. A critical time window for dopamine actions on the structural plasticity of dendritic spines. Science 345, 1616–1620 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Belloso-Iguerategui, A. et al. Hippocampal synaptic failure is an early event in experimental parkinsonism with subtle cognitive deficit. Brain https://doi.org/10.1093/brain/awad227 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Villar-Conde, S. et al. The human hippocampus in Parkinson’s disease: an integrative stereological and proteomic study. J. Parkinsons Dis. 11, 1345–1365 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Giordano, N. et al. Motor learning and metaplasticity in striatal neurons: relevance for Parkinson’s disease. Brain 141, 505–520 (2018).

    PubMed  Google Scholar 

  149. Tozzi, A. et al. Alpha-synuclein produces early behavioral alterations via striatal cholinergic synaptic dysfunction by interacting with GluN2D N-methyl-D-aspartate receptor subunit. Biol. Psychiatry 79, 402–414 (2016).

    CAS  PubMed  Google Scholar 

  150. Tozzi, A. et al. Dopamine-dependent early synaptic and motor dysfunctions induced by α-synuclein in the nigrostriatal circuit. Brain 144, 3477–3491 (2021).

    PubMed  PubMed Central  Google Scholar 

  151. Durante, V. et al. Alpha-synuclein targets GluN2A NMDA receptor subunit causing striatal synaptic dysfunction and visuospatial memory alteration. Brain 142, 1365–1385 (2019).

    PubMed  Google Scholar 

  152. Picconi, B. et al. Inhibition of phosphodiesterases rescues striatal long-term depression and reduces levodopa-induced dyskinesia. Brain 134, 375–387 (2011).

    PubMed  Google Scholar 

  153. Tozzi, A. et al. Mechanisms underlying altered striatal synaptic plasticity in old A53T-α synuclein overexpressing mice. Neurobiol. Aging 33, 1792–1799 (2012).

    CAS  PubMed  Google Scholar 

  154. Jung Lung, H. et al. Quantitative study of 18F-(+)DTBZ image: comparison of PET template-based and MRI based image analysis. Sci. Rep. 8, 16027 (2018).

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

P.C.: manuscript conception. S.C.: literature search and first draft. A.T.C. and G.D.L.: figure preparation. P.C., G.D.L., G.M.G. and C.M.: revision of the manuscript, critical discussion, and proofreading of the final version.

Corresponding author

Correspondence to Paolo Calabresi.

Ethics declarations

Competing interests

P.C. received/receives research support, speaker honoraria, and support to attend national and international conferences (not related to the present study) from Abbvie, Bayer Schering, Bial, Biogen-Dompè, Biogen-Idec, Eisai, Lilly, Lundbeck, Lusofarmaco, Merck-Serono, Novartis, Sanofi-Genzyme, Teva, UCB Pharma and Zambon. The other authors reported no funding from any institution, including personal relationships, interests, grants, employment, affiliations, patents, inventions, honoraria, consultancies, royalties, stock options/ownership, or expert testimony for the last 12 months, biomedical financial interests or potential conflicts of interest.

Peer review

Peer review information

Nature Reviews Neurology thanks Yoland Smith and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Citro, S., Lazzaro, G.D., Cimmino, A.T. et al. A multiple hits hypothesis for memory dysfunction in Parkinson disease. Nat Rev Neurol 20, 50–61 (2024). https://doi.org/10.1038/s41582-023-00905-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-023-00905-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing