Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The interplay between microbial communities and soil properties

Abstract

In recent years, there has been considerable progress in determining the soil properties that influence the structure of the soil microbiome. By contrast, the effects of microorganisms on their soil habitat have received less attention with most previous studies focusing on microbial contributions to soil carbon and nitrogen dynamics. However, soil microorganisms are not only involved in nutrient cycling and organic matter transformations but also alter the soil habitat through various biochemical and biophysical mechanisms. Such microbially mediated modifications of soil properties can have local impacts on microbiome assembly with pronounced ecological ramifications. In this Review, we describe the processes by which microorganisms modify the soil environment, considering soil physics, hydrology and chemistry. We explore how microorganism–soil interactions can generate feedback loops and discuss how microbially mediated modifications of soil properties can serve as an alternative avenue for the management and manipulation of microbiomes to combat soil threats and global change.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The interplay between soil environmental conditions and the soil microbiome.
Fig. 2: Microorganisms break down minerals and build mineral structures.
Fig. 3: Microbial processes that affect soil aggregation.
Fig. 4: Microbial processes with varying impacts on water-related soil properties.
Fig. 5: Harnessing microbial communities to combat soil threats and global change.

Similar content being viewed by others

References

  1. Whitman, W. B., Coleman, D. C. & Wiebe, W. J. Prokaryotes: the unseen majority. Proc. Natl Acad. Sci. USA 95, 6578–6583 (1998).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fierer, N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 15, 579–590 (2017).

    CAS  PubMed  Google Scholar 

  3. Bahram, M. et al. Structure and function of the global topsoil microbiome. Nature 560, 233–237 (2018). This study is a global survey of the soil bacteria and fungi revealing the importance of both environmental filtering and niche differentiation in determining the soil microbial composition.

    ADS  CAS  PubMed  Google Scholar 

  4. Keiluweit, M., Wanzek, T., Kleber, M., Nico, P. & Fendorf, S. Anaerobic microsites have an unaccounted role in soil carbon stabilization. Nat. Commun. 8, 1771 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  5. Schuur, Ea. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).

    ADS  CAS  PubMed  Google Scholar 

  6. Schimel, J. & Schaeffer, S. Microbial control over carbon cycling in soil. Front. Microbiol. 3, 348 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Fowler, D. et al. The global nitrogen cycle in the twenty-first century. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368, 20130164 (2013).

    PubMed  PubMed Central  Google Scholar 

  8. Barker, W. W. & Banfield, J. F. Biologically versus inorganically mediated weathering reactions: relationships between minerals and extracellular microbial polymers in lithobiontic communities. Chem. Geol. 132, 55–69 (1996).

    ADS  CAS  Google Scholar 

  9. Doetterl, S. et al. Links among warming, carbon and microbial dynamics mediated by soil mineral weathering. Nat. Geosci. 11, 589–593 (2018).

    ADS  CAS  Google Scholar 

  10. Napieralski, S. A. et al. Microbial chemolithotrophy mediates oxidative weathering of granitic bedrock. Proc. Natl Acad. Sci. USA 116, 26394–26401 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Finlay, R. D. et al. Reviews and syntheses: biological weathering and its consequences at different spatial levels — from nanoscale to global scale. Biogeosciences 17, 1507–1533 (2020).

    ADS  CAS  Google Scholar 

  12. Sokol, N. W. et al. Life and death in the soil microbiome: how ecological processes influence biogeochemistry. Nat. Rev. Microbiol. 20, 415–430 (2022).

    CAS  PubMed  Google Scholar 

  13. Moreau, D., Bardgett, R. D., Finlay, R. D., Jones, D. L. & Philippot, L. A plant perspective on nitrogen cycling in the rhizosphere. Funct. Ecol. 33, 540–552 (2019).

    Google Scholar 

  14. Schimel, J. P. & Bennett, J. Nitrogen mineralization: challenges of a changing paradigm. Ecology 85, 591–602 (2004).

    Google Scholar 

  15. Geisseler, D., Horwath, W. R., Joergensen, R. G. & Ludwig, B. Pathways of nitrogen utilization by soil microorganisms — a review. Soil Biol. Biochem. 42, 2058–2067 (2010).

    CAS  Google Scholar 

  16. Husson, O. Redox potential (Eh) and pH as drivers of soil/plant/microorganism systems: a transdisciplinary overview pointing to integrative opportunities for agronomy. Plant Soil 362, 389–417 (2013).

    CAS  Google Scholar 

  17. Bolan, N. S. & Hedley, M. J. Role of carbon, nitrogen, and sulfur cycles in soil acidification. in Handbook of Soil Acidity (CRC Press, 2003).

  18. Sánchez-Cañete, E. P., Barron-Gafford, G. A. & Chorover, J. A considerable fraction of soil-respired CO2 is not emitted directly to the atmosphere. Sci. Rep. 8, 13518 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  19. Mergelov, N. et al. Alteration of rocks by endolithic organisms is one of the pathways for the beginning of soils on Earth. Sci. Rep. 8, 3367 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  20. Gadd, G. M. et al. Oxalate production by fungi: significance in geomycology, biodeterioration and bioremediation. Fungal Biol. Rev. 28, 36–55 (2014).

    Google Scholar 

  21. Jones, D. L., Dennis, P. G., Owen, A. G. & van Hees, P. A. W. Organic acid behavior in soils — misconceptions and knowledge gaps. Plant Soil 248, 31–41 (2003).

    CAS  Google Scholar 

  22. Hervé, V., Junier, T., Bindschedler, S., Verrecchia, E. & Junier, P. Diversity and ecology of oxalotrophic bacteria. World J. Microbiol. Biotechnol. 32, 28 (2016).

    PubMed  Google Scholar 

  23. Syed, S., Buddolla, V. & Lian, B. Oxalate carbonate pathway — conversion and fixation of soil carbon — a potential scenario for sustainability. Front. Plant Sci. 11, 591297 (2020).

    PubMed  PubMed Central  Google Scholar 

  24. Norton, J. & Ouyang, Y. Controls and adaptive management of nitrification in agricultural soils. Front. Microbiol. 10, 1931 (2019).

    PubMed  PubMed Central  Google Scholar 

  25. Huet, S. et al. Experimental community coalescence sheds light on microbial interactions in soil and restores impaired functions. Microbiome 11, 42 (2023). This work experimentally demonstrated that depletion of bacterial ammonia oxidizers through community manipulation reduces soil pH.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Fernandes, T. R., Segorbe, D., Prusky, D. & Di Pietro, A. How alkalinization drives fungal pathogenicity. PLoS Pathog. 13, e1006621 (2017).

    PubMed  PubMed Central  Google Scholar 

  27. Palmieri, D., Vitale, S., Lima, G., Di Pietro, A. & Turrà, D. A bacterial endophyte exploits chemotropism of a fungal pathogen for plant colonization. Nat. Commun. 11, 5264 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vylkova, S. Environmental pH modulation by pathogenic fungi as a strategy to conquer the host. PLoS Pathog. 13, e1006149 (2017).

    PubMed  PubMed Central  Google Scholar 

  29. Howarth, R. W., Stewart, J. W. B. & Ivanov, M. V. Sulphur Cycling on the Continents: Wetlands, Terrestrial Ecosystems and Associated Water Bodies (John Wiley & Sons, Ltd, 1992).

  30. Koch, T. & Dahl, C. A novel bacterial sulfur oxidation pathway provides a new link between the cycles of organic and inorganic sulfur compounds. ISME J. 12, 2479–2491 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Yang, Z., Haneklaus, S., Ram Singh, B. & Schnug, E. Effect of repeated applications of elemental sulfur on microbial population, sulfate concentration, and pH in soils. Commun. Soil Sci. Plant Anal. 39, 124–140 (2007).

    Google Scholar 

  32. Linder, T. Assimilation of alternative sulfur sources in fungi. World J. Microbiol. Biotechnol. 34, 51 (2018).

    PubMed  PubMed Central  Google Scholar 

  33. Kappler, A. et al. An evolving view on biogeochemical cycling of iron. Nat. Rev. Microbiol. 19, 360–374 (2021). This study is a comprehensive review of abiotic and biotic processes involved in oxidation of Fe(II) and reduction of Fe(III).

    CAS  PubMed  Google Scholar 

  34. Vaksmaa, A. et al. Stratification of diversity and activity of methanogenic and methanotrophic microorganisms in a nitrogen-fertilized Italian paddy soil. Front. Microbiol. 8, 2127 (2017).

    PubMed  PubMed Central  Google Scholar 

  35. Gabriel, G. V. M. et al. Methane emission suppression in flooded soil from Amazonia. Chemosphere 250, 126263 (2020).

    CAS  PubMed  Google Scholar 

  36. Borch, T. et al. Biogeochemical redox processes and their impact on contaminant dynamics. Environ. Sci. Technol. 44, 15–23 (2010).

    ADS  CAS  PubMed  Google Scholar 

  37. Byrne, J. M. et al. Redox cycling of Fe(II) and Fe(III) in magnetite by Fe-metabolizing bacteria. Science 347, 1473–1476 (2015).

    ADS  CAS  PubMed  Google Scholar 

  38. Johnstone, T. C. & Nolan, E. M. Beyond iron: non-classical biological functions of bacterial siderophores. Dalton Trans. 44, 6320–6339 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Schalk, I. J., Hannauer, M. & Braud, A. New roles for bacterial siderophores in metal transport and tolerance. Environ. Microbiol. 13, 2844–2854 (2011).

    CAS  PubMed  Google Scholar 

  40. Gadd, G. M. Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156, 609–643 (2010). 2010.

    CAS  PubMed  Google Scholar 

  41. Samuels, T. et al. in Biogeochemical Cycles 59–79 (American Geophysical Union (AGU), 2020).

  42. Jongmans, A. G. et al. Rock-eating fungi. Nature 389, 682–683 (1997).

    ADS  CAS  Google Scholar 

  43. Uroz, S., Calvaruso, C., Turpault, M.-P. & Frey-Klett, P. Mineral weathering by bacteria: ecology, actors and mechanisms. Trends Microbiol. 17, 378–387 (2009).

    CAS  PubMed  Google Scholar 

  44. Tang, Y., Zeiner, C. A., Santelli, C. M. & Hansel, C. M. Fungal oxidative dissolution of the Mn(II)-bearing mineral rhodochrosite and the role of metabolites in manganese oxide formation. Environ. Microbiol. 15, 1063–1077 (2013).

    CAS  PubMed  Google Scholar 

  45. Aoki, Y., Hoshino, M. & Matsubara, T. Silica and testate amoebae in a soil under pine–oak forest. Geoderma 142, 29–35 (2007).

    ADS  CAS  Google Scholar 

  46. Sommer, M. et al. Si cycling in a forest biogeosystem — the importance of transient state biogenic Si pools. Biogeosciences 10, 4991–5007 (2013).

    ADS  Google Scholar 

  47. Zhu, T. & Dittrich, M. Carbonate precipitation through microbial activities in natural environment, and their potential in biotechnology: a review. Front. Bioeng. Biotechnol. https://doi.org/10.3389/fbioe.2016.00004 (2016).

  48. Six, J., Bossuyt, H., Degryze, S. & Denef, K. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil. Tillage Res. 79, 7–31 (2004).

    Google Scholar 

  49. Chenu, C. & Cosentino, D. Microbial regulation of soil structural dynamics. Archit. Biol. Soils Life Inn. Space https://doi.org/10.1079/9781845935320.0037 (2011).

  50. Ritz, K. & Young, I. M. Interactions between soil structure and fungi. Mycologist 18, 52–59 (2004).

    Google Scholar 

  51. Rillig, M. C. & Mummey, D. L. Mycorrhizas and soil structure. N. Phytol. 171, 41–53 (2006).

    CAS  Google Scholar 

  52. Lehmann, A., Zheng, W. & Rillig, M. C. Soil biota contributions to soil aggregation. Nat. Ecol. Evol. 1, 1828–1835 (2017). This study is a comprehensive meta-analysis of the role of soil biota on soil structure, using evidence from experiments across different organism groups.

    PubMed  PubMed Central  Google Scholar 

  53. Totsche, K. U. et al. Microaggregates in soils. J. Plant Nutr. Soil Sci. 181, 104–136 (2018).

    CAS  Google Scholar 

  54. Leifheit, E. F., Veresoglou, S. D., Lehmann, A., Morris, E. K. & Rillig, M. C. Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation — a meta-analysis. Plant Soil 374, 523–537 (2014).

    CAS  Google Scholar 

  55. Lehmann, A. et al. Fungal traits important for soil aggregation. Front. Microbiol. 10, 2904 (2020).

    PubMed  PubMed Central  Google Scholar 

  56. Guhra, T., Ritschel, T. & Totsche, K. U. Formation of mineral–mineral and organo–mineral composite building units from microaggregate-forming materials including microbially produced extracellular polymeric substances. Eur. J. Soil Sci. 70, 604–615 (2019).

    CAS  Google Scholar 

  57. Costa, O. Y. A., Raaijmakers, J. M. & Kuramae, E. E. Microbial extracellular polymeric substances: ecological function and impact on soil aggregation. Front. Microbiol. 9, 1636 (2018).

    PubMed  PubMed Central  Google Scholar 

  58. Chamizo, S., Mugnai, G., Rossi, F., Certini, G. & De Philippis, R. Cyanobacteria inoculation improves soil stability and fertility on different textured soils: gaining insights for applicability in soil restoration. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2018.00049 (2018).

  59. Cuadros, J. Clay minerals interaction with microorganisms: a review. Clay Min. 52, 235–261 (2017).

    ADS  CAS  Google Scholar 

  60. Krause, L. et al. Initial microaggregate formation: association of microorganisms to montmorillonite-goethite aggregates under wetting and drying cycles. Geoderma 351, 250–260 (2019).

    ADS  CAS  Google Scholar 

  61. Schimel, J. P. Life in dry soils: effects of drought on soil microbial communities and processes. Annu. Rev. Ecol. Evol. Syst. 49, 409–432 (2018).

    Google Scholar 

  62. Colica, G. et al. Microbial secreted exopolysaccharides affect the hydrological behavior of induced biological soil crusts in desert sandy soils. Soil Biol. Biochem. 68, 62–70 (2014).

    CAS  Google Scholar 

  63. Rosenzweig, R., Shavit, U. & Furman, A. Water retention curves of biofilm-affected soils using xanthan as an analogue. Soil Sci. Soc. Am. J. 76, 61–69 (2012).

    ADS  CAS  Google Scholar 

  64. Chenu, C. Clay- or sand-polysaccharide associations as models for the interface between micro-organisms and soil: water related properties and microstructure. Geoderma 56, 143–156 (1993).

    ADS  CAS  Google Scholar 

  65. Benard, P. et al. Microhydrological niches in soils: how mucilage and EPS alter the biophysical properties of the rhizosphere and other biological hotspots. Vadose Zone J. 18, 180211 (2019). This work very clearly analyses the physical processes by which root mucilages and EPS alter soil hydrology.

    Google Scholar 

  66. Kroener, E., Zarebanadkouki, M., Kaestner, A. & Carminati, A. Nonequilibrium water dynamics in the rhizosphere: how mucilage affects water flow in soils. Water Resour. Res. 50, 6479–6495 (2014).

    ADS  Google Scholar 

  67. Volk, E., Iden, S. C., Furman, A., Durner, W. & Rosenzweig, R. Biofilm effect on soil hydraulic properties: experimental investigation using soil-grown real biofilm: hydraulic properties of biofilm amended soil. Water Resour. Res. 52, 5813–5828 (2016).

    ADS  Google Scholar 

  68. Zheng, W. et al. Plant growth-promoting rhizobacteria (PGPR) reduce evaporation and increase soil water retention. Water Resour. Res. 54, 3673–3687 (2018).

    ADS  Google Scholar 

  69. Adessi, A., Cruz de Carvalho, R., De Philippis, R., Branquinho, C. & Marques da Silva, J. Microbial extracellular polymeric substances improve water retention in dryland biological soil crusts. Soil Biol. Biochem. 116, 67–69 (2018).

    CAS  Google Scholar 

  70. Or, D., Phutane, S. & Dechesne, A. Extracellular polymeric substances affecting pore-scale hydrologic conditions for bacterial activity in unsaturated soils. Vadose Zone J. 6, 298–305 (2007).

    CAS  Google Scholar 

  71. Morales, V. L., Parlange, J.-Y. & Steenhuis, T. S. Are preferential flow paths perpetuated by microbial activity in the soil matrix? A review. J. Hydrol. 393, 29–36 (2010).

    ADS  CAS  Google Scholar 

  72. Chenu, C. & Roberson, E. B. Diffusion of glucose in microbial extracellular polysaccharide as affected by water potential. Soil Biol. Biochem. 28, 877–884 (1996).

    CAS  Google Scholar 

  73. Guo, Y.-S. et al. Bacterial extracellular polymeric substances amplify water content variability at the pore scale. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2018.00093 (2018).

  74. Deng, J. Z. et al. Synergistic effects of soil microstructure and bacterial EPS on drying rate in emulated soil micromodels. Soil. Biol. Amp Biochem. 83, 116–124 (2015).

    CAS  Google Scholar 

  75. Buchmann, C., Steinmetz, Z., Brax, M., Peth, S. & Schaumann, G. E. Effect of matric potential and soil–water–hydrogel interactions on biohydrogel-induced soil microstructural stability. Geoderma 362, 114142 (2020).

    ADS  CAS  Google Scholar 

  76. Rillig, M. C. A connection between fungal hydrophobins and soil water repellency? Pedobiologia 49, 395–399 (2005).

    CAS  Google Scholar 

  77. Rabot, E., Wiesmeier, M., Schlüter, S. & Vogel, H.-J. Soil structure as an indicator of soil functions: a review. Geoderma 314, 122–137 (2018).

    ADS  Google Scholar 

  78. Feeney, D. S. et al. Three-dimensional microorganization of the soil–root–microbe system. Microb. Ecol. 52, 151–158 (2006).

    ADS  PubMed  Google Scholar 

  79. Helliwell, J. R., Miller, A. J., Whalley, W. R., Mooney, S. J. & Sturrock, C. J. Quantifying the impact of microbes on soil structural development and behaviour in wet soils. Soil Biol. Biochem. 74, 138–147 (2014).

    CAS  Google Scholar 

  80. De Gryze, S. et al. Pore structure changes during decomposition of fresh residue: X-ray tomography analyses. Geoderma 134, 82–96 (2006).

    ADS  Google Scholar 

  81. Zhang, W., Gao, W., Whalley, W. R. & Ren, T. Physical properties of a sandy soil as affected by incubation with a synthetic root exudate: strength, thermal and hydraulic conductivity, and evaporation. Eur. J. Soil Sci. 72, 782–792 (2021).

    CAS  PubMed  Google Scholar 

  82. Egerton-Warburton, L. M., Querejeta, J. I. & Allen, M. F. Common mycorrhizal networks provide a potential pathway for the transfer of hydraulically lifted water between plants. J. Exp. Bot. 58, 1473–1483 (2007).

    CAS  PubMed  Google Scholar 

  83. Allen, M. F. Mycorrhizal fungi: highways for water and nutrients in arid soils. Vadose Zone J. 6, 291–297 (2007).

    Google Scholar 

  84. Jia, Y., van der Heijden, M. G. A., Wagg, C., Feng, G. & Walder, F. Symbiotic soil fungi enhance resistance and resilience of an experimental grassland to drought and nitrogen deposition. J. Ecol. 109, 3171–3181 (2021).

    CAS  Google Scholar 

  85. Singh, D., Mathimaran, N., Boller, T. & Kahmen, A. Bioirrigation: a common mycorrhizal network facilitates the water transfer from deep-rooted pigeon pea to shallow-rooted finger millet under drought. Plant Soil 440, 277–292 (2019).

    CAS  Google Scholar 

  86. Bahadur, A. et al. Mechanistic insights into arbuscular mycorrhizal fungi-mediated drought stress tolerance in plants. Int. J. Mol. Sci. 20, 4199 (2019).

    PubMed  PubMed Central  Google Scholar 

  87. Kakouridis, A. et al. Routes to roots: direct evidence of water transport by arbuscular mycorrhizal fungi to host plants. N. Phytol. 236, 210–221 (2022).

    CAS  Google Scholar 

  88. Bach, E. M., Williams, R. J., Hargreaves, S. K., Yang, F. & Hofmockel, K. S. Greatest soil microbial diversity found in micro-habitats. Soil Biol. Biochem. 118, 217–226 (2018).

    CAS  Google Scholar 

  89. Odling-Smee, J., Erwin, D. H., Palkovacs, E. P., Feldman, M. W. & Laland, K. N. Niche construction theory: a practical guide for ecologists. Q. Rev. Biol. 88, 3–28 (2013).

    Google Scholar 

  90. Matthews, B. et al. Under niche construction: an operational bridge between ecology, evolution, and ecosystem science. Ecol. Monogr. 84, 245–263 (2014).

    Google Scholar 

  91. Roman, M. S. & Wagner, A. An enormous potential for niche construction through bacterial cross-feeding in a homogeneous environment. PLoS Comput. Biol. 14, e1006340 (2018).

    Google Scholar 

  92. Callahan, B. J., Fukami, T. & Fisher, D. S. Rapid evolution of adaptive niche construction in experimental microbial populations. Evolution 68, 3307–3316 (2014).

    PubMed  Google Scholar 

  93. Poulton, S. W. et al. A 200-million-year delay in permanent atmospheric oxygenation. Nature 592, 232–236 (2021).

    ADS  CAS  PubMed  Google Scholar 

  94. Olejarz, J., Iwasa, Y., Knoll, A. H. & Nowak, M. A. The great oxygenation event as a consequence of ecological dynamics modulated by planetary change. Nat. Commun. 12, 3985 (2021).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  95. Pausas, J. G. & Bond, W. J. Feedbacks in ecology and evolution. Trends Ecol. Evol. 37, 637–644 (2022).

    PubMed  Google Scholar 

  96. Laland, K. N. & O’Brien, M. J. Niche construction theory and archaeology. J. Archeol. Meth. Theory 17, 303–322 (2010).

    Google Scholar 

  97. Kennedy, M., Droser, M., Mayer, L. M., Pevear, D. & Mrofka, D. Late Precambrian oxygenation; inception of the clay mineral factory. Science 311, 1446–1449 (2006).

    ADS  CAS  PubMed  Google Scholar 

  98. Hazen, R. M. Evolution of minerals. Sci. Am. 302, 58–65 (2010).

    CAS  PubMed  Google Scholar 

  99. Hemkemeyer, M. et al. Artificial soil studies reveal domain-specific preferences of microorganisms for the colonisation of different soil minerals and particle size fractions. FEMS Microbiol. Ecol. 90, 770–782 (2014).

    CAS  PubMed  Google Scholar 

  100. Whitman, T. et al. Microbial community assembly differs across minerals in a rhizosphere microcosm. Environ. Microbiol. 20, 4444–4460 (2018).

    CAS  PubMed  Google Scholar 

  101. Heckman, K. et al. The influence of goethite and gibbsite on soluble nutrient dynamics and microbial community composition. Biogeochemistry 112, 179–195 (2013).

    CAS  Google Scholar 

  102. Lentini, C., Wankel, S. & Hansel, C. Enriched iron(III)-reducing bacterial communities are shaped by carbon substrate and iron oxide mineralogy. Front. Microbiol. 3, 404 (2012).

    PubMed  PubMed Central  Google Scholar 

  103. Uroz, S., Kelly, L. C., Turpault, M.-P., Lepleux, C. & Frey-Klett, P. The mineralosphere concept: mineralogical control of the distribution and function of mineral-associated bacterial communities. Trends Microbiol. 23, 751–762 (2015).

    CAS  PubMed  Google Scholar 

  104. Nicolitch, O. et al. A microcosm approach highlights the response of soil mineral weathering bacterial communities to an increase of K and Mg availability. Sci. Rep. 9, 14403 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sun, Q., Fu, Z., Finlay, R. & Lian, B. Transcriptome analysis provides novel insights into the capacity of the ectomycorrhizal fungus Amanita pantherina to weather k-containing feldspar and apatite. Appl. Environ. Microbiol. 85, e00719 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  106. Primo, E. et al. Exopolysaccharide II is relevant for the survival of Sinorhizobium meliloti under water deficiency and salinity stress. Molecules 25, 4876 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Upadhyay, S. K., Singh, J. S. & Singh, D. P. Exopolysaccharide-producing plant growth-promoting rhizobacteria under salinity condition. Pedosphere 21, 214–222 (2011).

    CAS  Google Scholar 

  108. Roberson, E. B. & Firestone, M. K. Relationship between desiccation and exopolysaccharide production in a soil Pseudomonas sp. Appl. Environ. Microbiol. 58, 1284–1291 (1992).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ratzke, C., Denk, J. & Gore, J. Ecological suicide in microbes. Nat. Ecol. Evol. 2, 867–872 (2018).

    PubMed  PubMed Central  Google Scholar 

  110. Romdhane, S. et al. Unraveling negative biotic interactions determining soil microbial community assembly and functioning. ISME J. 16, 296–306 (2021).

    PubMed  PubMed Central  Google Scholar 

  111. Philippot, L. et al. Dissimilatory nitrite-reductase provides a competitive advantage to Pseudomonas sp. RTC01 to colonise the centre of soil aggregates. FEMS Microbiol. Ecol. 21, 175–185 (1996).

    CAS  Google Scholar 

  112. Schlüter, S. et al. Denitrification in soil aggregate analogues-effect of aggregate size and oxygen diffusion. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2018.00017 (2018).

  113. Sexstone, A. J., Revsbech, N. P., Parkin, T. B. & Tiedje, J. M. Direct measurement of oxygen profiles and denitrification rates in soil aggregates. Soil Sci. Soc. Am. J. 49, 645–651 (1985). This work describes the use of microelectrodes to demonstrate how O2 profiles and the presence of anoxic microenvironments in soil aggregates determine the potential for microbial denitrification.

    ADS  CAS  Google Scholar 

  114. Loudon, C. M., Matthews, B., Sevilgen, D. S. & Ibelings, B. W. Experimental evidence that evolution by niche construction affects dissipative ecosystem dynamics. Evol. Ecol. 30, 221–234 (2016).

    Google Scholar 

  115. Yuste, J. C. et al. Drought-resistant fungi control soil organic matter decomposition and its response to temperature. Glob. Change Biol. 17, 1475–1486 (2011).

    ADS  Google Scholar 

  116. de Vries, F. T. et al. Soil bacterial networks are less stable under drought than fungal networks. Nat. Commun. 9, 3033 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  117. Liu, B. et al. Bio-remediation of desiccation cracking in clayey soils through microbially induced calcite precipitation (MICP). Eng. Geol. 264, 105389 (2020).

    Google Scholar 

  118. Wösten, H. A. B. Hydrophobins: multipurpose proteins. Annu. Rev. Microbiol. 55, 625–646 (2001).

    PubMed  Google Scholar 

  119. Schiessl, K. T., Janssen, E. M.-L., Kraemer, S. M., McNeill, K. & Ackermann, M. Magnitude and mechanism of siderophore-mediated competition at low iron solubility in the Pseudomonas aeruginosa pyochelin system. Front. Microbiol. 8, 1964 (2017).

    PubMed  PubMed Central  Google Scholar 

  120. Niehus, R., Picot, A., Oliveira, N. M., Mitri, S. & Foster, K. R. The evolution of siderophore production as a competitive trait: the competitive evolution of siderophores. Evolution 71, 1443–1455 (2017).

    CAS  PubMed  Google Scholar 

  121. Hesse, E. et al. Ecological selection of siderophore‐producing microbial taxa in response to heavy metal contamination. Ecol. Lett. 21, 117–127 (2018).

    PubMed  Google Scholar 

  122. Sexton, D. J. & Schuster, M. Nutrient limitation determines the fitness of cheaters in bacterial siderophore cooperation. Nat. Commun. 8, 230 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  123. Butaitė, E., Baumgartner, M., Wyder, S. & Kümmerli, R. Siderophore cheating and cheating resistance shape competition for iron in soil and freshwater Pseudomonas communities. Nat. Commun. 8, 414 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  124. Rodriguez-Caballero, E. et al. Dryland photoautotrophic soil surface communities endangered by global change. Nat. Geosci. 11, 185–189 (2018).

    ADS  CAS  Google Scholar 

  125. Campbell, S. E. Soil stabilization by a prokaryotic desert crust: implications for Precambrian land biota. Orig. Life 9, 335–348 (1979).

    ADS  CAS  PubMed  Google Scholar 

  126. Belnap, J. & Gardner, J. S. Soil microstructure in soils of the Colorado Plateau: the role of the cyanobacterium Microcoleus vaginatus. Gt. Basin Nat. 53, 40–47 (1993).

    Google Scholar 

  127. Miralles, I., Soria, R., Lucas-Borja, M. E., Soriano, M. & Ortega, R. Effect of biocrusts on bacterial community composition at different soil depths in Mediterranean semi-arid ecosystems. Sci. Total Environ. 733, 138613 (2020).

    ADS  CAS  PubMed  Google Scholar 

  128. Swenson, T. L., Karaoz, U., Swenson, J. M., Bowen, B. P. & Northen, T. R. Linking soil biology and chemistry in biological soil crust using isolate exometabolomics. Nat. Commun. 9, 19 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  129. Chamizo, S., Cantón, Y., Miralles-Mellado, I. & Domingo, F. Biological soil crust development affects physicochemical characteristics of soil surface in semiarid ecosystems. Soil Biol. Biochem. 49, 96–105 (2012).

    CAS  Google Scholar 

  130. Couradeau, E., Giraldo-Silva, A., De Martini, F. & Garcia-Pichel, F. Spatial segregation of the biological soil crust microbiome around its foundational cyanobacterium, Microcoleus vaginatus, and the formation of a nitrogen-fixing cyanosphere. Microbiome 7, 55 (2019).

    PubMed  PubMed Central  Google Scholar 

  131. Lan, S., Wu, L., Adessi, A. & Hu, C. Cyanobacterial persistence and influence on microbial community dynamics over 15 years in induced biocrusts. Environ. Microbiol. 24, 66–81 (2022).

    CAS  PubMed  Google Scholar 

  132. Vos, M., Wolf, A. B., Jennings, S. J. & Kowalchuk, G. A. Micro-scale determinants of bacterial diversity in soil. FEMS Microbiol. Rev. 37, 936–954 (2013).

    CAS  PubMed  Google Scholar 

  133. Védère, C., Vieublé Gonod, L., Nunan, N. & Chenu, C. Opportunities and limits in imaging microorganisms and their activities in soil microhabitats. Soil Biol. Biochem. 174, 108807 (2022).

    Google Scholar 

  134. Geisseler, D. & Scow, K. M. Long-term effects of mineral fertilizers on soil microorganisms — a review. Soil Biol. Biochem. 75, 54–63 (2014).

    CAS  Google Scholar 

  135. Johnsen, K., Jacobsen, C. S., Torsvik, V. & Sørensen, J. Pesticide effects on bacterial diversity in agricultural soils — a review. Biol. Fertil. Soils 33, 443–453 (2001).

    CAS  Google Scholar 

  136. Cania, B. et al. Site-specific conditions change the response of bacterial producers of soil structure-stabilizing agents such as exopolysaccharides and lipopolysaccharides to tillage intensity. Front. Microbiol. 11, 568 (2020).

    PubMed  PubMed Central  Google Scholar 

  137. Sae-Tun, O. et al. Fungal biomass and microbial necromass facilitate soil carbon sequestration and aggregate stability under different soil tillage intensities. Appl. Soil. Ecol. 179, 104599 (2022).

    Google Scholar 

  138. Lindstrom, M., Lobb, D. & Schumacher, T. Tillage erosion: an overview. Ann. Arid. Zone 40, 337–350 (2001).

    Google Scholar 

  139. Lal, R., Reicosky, D. C. & Hanson, J. D. Evolution of the plow over 10,000 years and the rationale for no-till farming. Soil. Tillage Res. 93, 1–12 (2007).

    Google Scholar 

  140. Zhao, Z.-B. et al. Fertilization changes soil microbiome functioning, especially phagotrophic protists. Soil Biol. Biochem. 148, 107863 (2020).

    CAS  Google Scholar 

  141. Hallin, S., Jones, C. M., Schloter, M. & Philippot, L. Relationship between N-cycling communities and ecosystem functioning in a 50-year-old fertilization experiment. ISME J. 3, 597–605 (2009).

    CAS  PubMed  Google Scholar 

  142. Cederlund, H. et al. Soil carbon quality and nitrogen fertilization structure bacterial communities with predictable responses of major bacterial phyla. Appl. Soil Ecol. 84, 62–68 (2014).

    Google Scholar 

  143. Beeckman, F., Motte, H. & Beeckman, T. Nitrification in agricultural soils: impact, actors and mitigation. Curr. Opin. Biotechnol. 50, 166–173 (2018).

    CAS  PubMed  Google Scholar 

  144. Zhu, X., Burger, M., Doane, T. A. & Horwath, W. R. Ammonia oxidation pathways and nitrifier denitrification are significant sources of N2O and NO under low oxygen availability. Proc. Natl Acad. Sci. USA 110, 6328–6333 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  145. Lu, L. et al. Nitrification of archaeal ammonia oxidizers in acid soils is supported by hydrolysis of urea. ISME J. 6, 1978–1984 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Hinckley, E.-L. S., Crawford, J. T., Fakhraei, H. & Driscoll, C. T. A shift in sulfur-cycle manipulation from atmospheric emissions to agricultural additions. Nat. Geosci. 13, 597–604 (2020).

    ADS  CAS  Google Scholar 

  147. Zhao, C., Degryse, F., Gupta, V. & McLaughlin, M. J. Elemental sulfur oxidation in Australian cropping soils. Soil Sci. Soc. Am. J. 79, 89–96 (2015).

    ADS  CAS  Google Scholar 

  148. Crouzet, O. et al. Soil photosynthetic microbial communities mediate aggregate stability: influence of cropping systems and herbicide use in an agricultural soil. Front. Microbiol. 10, 1319 (2019).

    PubMed  PubMed Central  Google Scholar 

  149. Krashevska, V., Klarner, B., Widyastuti, R., Maraun, M. & Scheu, S. Changes in structure and functioning of protist (Testate amoebae) communities due to conversion of lowland rainforest into rubber and oil palm plantations. PLoS ONE 11, e0160179 (2016).

    PubMed  PubMed Central  Google Scholar 

  150. Philippot, L., Raaijmakers, J. M., Lemanceau, P. & van der Putten, W. H. Going back to the roots: the microbial ecology of the rhizosphere. Nat. Rev. Microbiol. 11, 789–799 (2013).

    CAS  PubMed  Google Scholar 

  151. Sher, Y. et al. Microbial extracellular polysaccharide production and aggregate stability controlled by switchgrass (Panicum virgatum) root biomass and soil water potential. Soil. Biol. Biochem. 143, 107742 (2020).

    CAS  Google Scholar 

  152. Whiffin, V. S., van Paassen, L. A. & Harkes, M. P. Microbial carbonate precipitation as a soil improvement technique. Geomicrobiol. J. 24, 417–423 (2007).

    CAS  Google Scholar 

  153. Naveed, M. et al. Application of microbially induced calcium carbonate precipitation with urea hydrolysis to improve the mechanical properties of soil. Ecol. Eng. 153, 105885 (2020).

    Google Scholar 

  154. DeJong, J. T. et al. Soil engineering in vivo: harnessing natural biogeochemical systems for sustainable, multi-functional engineering solutions. J. R. Soc. Interface 8, 1–15 (2011).

    PubMed  Google Scholar 

  155. Dejong, J. T. et al. Biogeochemical processes and geotechnical applications: progress, opportunities and challenges. Géotechnique 63, 287–301 (2013).

    Google Scholar 

  156. Raveh-Amit, H. & Tsesarsky, M. Biostimulation in desert soils for microbial-induced calcite precipitation. Appl. Sci. 10, 2905 (2020).

    CAS  Google Scholar 

  157. Kiasari, M., Pakbaz, M. & Ghezelbash, G. Increasing of soil urease activity by stimulation of indigenous bacteria and investigation of their role on shear strength. Geomicrobiol. J. 35, 1–8 (2018).

    Google Scholar 

  158. Gowthaman, S., Iki, T., Nakashima, K., Ebina, K. & Kawasaki, S. Feasibility study for slope soil stabilization by microbial induced carbonate precipitation (MICP) using indigenous bacteria isolated from cold subarctic region. SN Appl. Sci. 1, 1480 (2019).

    Google Scholar 

  159. Salifu, E., MacLachlan, E., Iyer, K. R., Knapp, C. W. & Tarantino, A. Application of microbially induced calcite precipitation in erosion mitigation and stabilisation of sandy soil foreshore slopes: a preliminary investigation. Eng. Geol. 201, 96–105 (2016).

    Google Scholar 

  160. Meng, H., Gao, Y., He, J., Qi, Y. & Hang, L. Microbially induced carbonate precipitation for wind erosion control of desert soil: field-scale tests. Geoderma 383, 114723 (2021).

    ADS  CAS  Google Scholar 

  161. Liu, B. et al. Potential drought mitigation through microbial induced calcite precipitation-MICP. Water Resour. Res. 57, e2020WR029434 (2021).

    ADS  Google Scholar 

  162. Chu, J., Stabnikov, V. & Ivanov, V. Microbially induced calcium carbonate precipitation on surface or in the bulk of soil. Geomicrobiol. J. 29, 544–549 (2012).

    CAS  Google Scholar 

  163. Park, C.-H., Li, X. R., Zhao, Y., Jia, R. L. & Hur, J.-S. Rapid development of cyanobacterial crust in the field for combating desertification. PLoS ONE 12, e0179903 (2017).

    PubMed  PubMed Central  Google Scholar 

  164. Malam Issa, O. et al. Effects of the inoculation of cyanobacteria on the microstructure and the structural stability of a tropical soil. Plant Soil 290, 209–219 (2007).

    CAS  Google Scholar 

  165. Chamizo, S., Adessi, A., Certini, G. & De Philippis, R. Cyanobacteria inoculation as a potential tool for stabilization of burned soils. Restor. Ecol. 28, S106–S114 (2020).

    Google Scholar 

  166. Sadeghi, S. H., Sadeghi Satri, M., Kheirfam, H. & Zarei Darki, B. Runoff and soil loss from small plots of erosion-prone marl soil inoculated with bacteria and cyanobacteria under real conditions. Eur. J. Soil Biol. 101, 103214 (2020).

    CAS  Google Scholar 

  167. Perruchon, C. et al. Characterization of the biodegradation, bioremediation and detoxification capacity of a bacterial consortium able to degrade the fungicide thiabendazole. Biodegradation 28, 383–394 (2017).

    CAS  PubMed  Google Scholar 

  168. Billet, L., Devers, M., Rouard, N., Martin-Laurent, F. & Spor, A. Labour sharing promotes coexistence in atrazine degrading bacterial communities. Sci. Rep. 9, 18363 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  169. Meyer, L., Guyot, S., Chalot, M. & Capelli, N. The potential of microorgansims as biomonitoring and bioremediation tools for mercury-contaminated soils. Ecotox. Env. Saf. 262, 115185 (2023).

    CAS  Google Scholar 

  170. Zhang, H., Yuan, X., Xiong, T., Wang, H. & Jiang, L. Bioremediation of co-contaminated soil with heavy metals and pesticides: influence factors, mechanisms and evaluation methods. Chem. Eng. J. 398, 125657 (2020).

    CAS  Google Scholar 

  171. Arantza, S.-J. et al. Bio- and phytoremediation: plants and microbes to the rescue of heavy metal polluted soils. SN Appl. Sci. 4, 59 (2022).

    CAS  Google Scholar 

  172. Xue, Z.-F., Cheng, W.-C., Wang, L. & Hu, W. Effects of bacterial inoculation and calcium source on microbial-induced carbonate precipitation for lead remediation. J. Hazard. Mater. 426, 128090 (2022).

    CAS  PubMed  Google Scholar 

  173. Cuaxinque-Flores, G. et al. Bioimmobilization of toxic metals by precipitation of carbonates using Sporosarcina luteola: an in vitro study and application to sulfide-bearing tailings. Sci. Total Environ. 724, 138124 (2020).

    ADS  CAS  PubMed  Google Scholar 

  174. Falkowski, P. G., Fenchel, T. & Delong, E. F. The microbial engines that drive earth’s biogeochemical cycles. Science 320, 1034–1039 (2008).

    ADS  CAS  PubMed  Google Scholar 

  175. Ribeiro, I. D. A. et al. Use of mineral weathering bacteria to enhance nutrient availability in crops: a review. Front. Plant. Sci. 11, 590774 (2020).

    PubMed  PubMed Central  Google Scholar 

  176. Pramanik, P., Goswami, A. J., Gosh, S. & Kalita, C. An indigenous strain of potassium‐solubilizing bacteria Bacillus pseudomycoides enhanced potassium uptake in tea plants by increasing potassium availability in the mica waste‐treated soil of North‐east India. J. Appl. Microbiol. 126, 215–222 (2019).

    CAS  PubMed  Google Scholar 

  177. EUROPA. IPCC Fifth Assessment Report: Climate Change 2014 (AR5). European Environment Agency https://www.eea.europa.eu/data-and-maps/indicators/greenhouse-gas-emission-trends-5/ipcc-fifth-assessment-report-climate (2014).

  178. McCutcheon, J., Wilson, S. A. & Southam, G. Microbially accelerated carbonate mineral precipitation as a strategy for in situ carbon sequestration and rehabilitation of asbestos mine sites. Environ. Sci. Technol. 50, 1419–1427 (2016).

    ADS  CAS  PubMed  Google Scholar 

  179. Rodell, M. & Li, B. Changing intensity of hydroclimatic extreme events revealed by GRACE and GRACE-FO. Nat. Water 1, 241–248 (2023).

    Google Scholar 

  180. Roper, M. M. Potential for remediation of water repellent soils by inoculation with wax-degrading bacteria in south-western Australia. Biologia 61, S358–S362 (2006).

    Google Scholar 

  181. Lowe, M.-A. et al. Bacillus subtilis and surfactant amendments for the breakdown of soil water repellency in a sandy soil. Geoderma 344, 108–118 (2019).

    ADS  CAS  Google Scholar 

  182. Batista, B. D. & Singh, B. K. Realities and hopes in the application of microbial tools in agriculture. Microb. Biotechnol. 14, 1258–1268 (2021).

    PubMed  PubMed Central  Google Scholar 

  183. Kaminsky, L. M., Trexler, R. V., Malik, R. J., Hockett, K. L. & Bell, T. H. The inherent conflicts in developing soil microbial inoculants. Trends Biotechnol. 37, 140–151 (2019).

    CAS  PubMed  Google Scholar 

  184. Jack, C. N., Petipas, R. H., Cheeke, T. E., Rowland, J. L. & Friesen, M. L. Microbial inoculants: silver bullet or microbial jurassic park? Trends Microbiol. 29, 299–308 (2021).

    CAS  PubMed  Google Scholar 

  185. Liu, X., Le Roux, X. & Salles, J. F. The legacy of microbial inoculants in agroecosystems and potential for tackling climate change challenges. iScience 25, 103821 (2022).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  186. Santos, M. S., Nogueira, M. A. & Hungria, M. Microbial inoculants: reviewing the past, discussing the present and previewing an outstanding future for the use of beneficial bacteria in agriculture. AMB Express 9, 205 (2019).

    PubMed  PubMed Central  Google Scholar 

  187. Waltz, E. A new crop of microbe startups raises big bucks, takes on the establishment. Nat. Biotechnol. 35, 1120–1122 (2017).

    CAS  PubMed  Google Scholar 

  188. Mitchell, A. C. & Ferris, F. G. The influence of Bacillus pasteurii on the nucleation and growth of calcium carbonate. Geomicrobiol. J. 23, 213–226 (2006).

    CAS  Google Scholar 

  189. Wen, K., Li, L., Zhang, R., Li, Y. & Amini, F. Micro-scale analysis of microbial-induced calcite precipitation in sandy soil through SEM/FIB imaging. Microsc. Today 27, 24–29 (2019).

    CAS  Google Scholar 

  190. Lehmann, A., Leifheit, E. F. & Rillig, M. C. in Mycorrhizal Mediation of Soil (eds Johnson, N. C., Gehring, C. & Jansa, J.) Ch. 14, 241–262 (Elsevier, 2017).

  191. Dorioz, J. M. D., Robert, M. & Chenu, C. The role of roots, fungi and bacteria on clay particle organization. An experimental approach. Geoderma 56, 179–194 (1993).

    ADS  Google Scholar 

  192. Angers, D. & Chenu, C. in Soil Processes and the Carbon Cycle 199–206 (CRC Press, 1997).

  193. Crowther, T. W. et al. The global soil community and its influence on biogeochemistry. Science 365, eaav0550 (2019).

    CAS  PubMed  Google Scholar 

  194. Jansson, J. K. & Hofmockel, K. S. Soil microbiomes and climate change. Nat. Rev. Microbiol. 18, 35–46 (2020).

    CAS  PubMed  Google Scholar 

  195. Lv, J., Huang, Z., Luo, L., Zhang, S. & Wang, Y. Advances in molecular and microscale characterization of soil organic matter: current limitations and future prospects. Environ. Sci. Technol. 56, 12793–12810 (2022).

    ADS  CAS  PubMed  Google Scholar 

  196. Islam, W., Noman, A., Naveed, H., Huang, Z. & Chen, H. Y. H. Role of environmental factors in shaping the soil microbiome. Environ. Sci. Pollut. Res. 27, 41225–41247 (2020).

    CAS  Google Scholar 

  197. Hinsinger, P., Plassard, C., Tang, C. & Jaillard, B. Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant Soil 248, 43–59 (2003).

    CAS  Google Scholar 

  198. Lurthy, T. et al. Impact of bacterial siderophores on iron status and ionome in pea. Front. Plant Sci. 11, 730 (2020).

    PubMed  PubMed Central  Google Scholar 

  199. Bar-Ness, E., Hadar, Y., Chen, Y., Shanzer, A. & Libman, J. Iron uptake by plants from microbial siderophores. Plant Physiol. 99, 1329–1335 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Maisch, M., Lueder, U., Kappler, A. & Schmidt, C. From plant to paddy — how rice root iron plaque can affect the paddy field iron cycling. Soil Syst. 4, 28 (2020).

    CAS  Google Scholar 

  201. Smits, M. M., Bonneville, S., Benning, L. G., Banwart, S. A. & Leake, J. R. Plant-driven weathering of apatite — the role of an ectomycorrhizal fungus. Geobiology 10, 445–456 (2012).

    CAS  PubMed  Google Scholar 

  202. Mujinya, B. B. et al. The origin of carbonates in termite mounds of the Lubumbashi area, D.R. Congo. Geoderma 165, 95–105 (2011).

    ADS  CAS  Google Scholar 

  203. Cailleau, G., Braissant, O. & Verrecchia, E. Turning sunlight into stone: the oxalate–carbonate pathway in a tropical tree ecosystem. Biogeosciences 8, 1755–1767 (2011).

    ADS  CAS  Google Scholar 

  204. Geisen, S. et al. Soil protists: a fertile frontier in soil biology research. FEMS Microbiol. Rev. 42, 293–323 (2018). This paper provides an outlook for research on soil protists, serving as an entry point for researchers interested in this organism group and its effects in soil.

    CAS  PubMed  Google Scholar 

  205. Erktan, A., Rillig, M. C., Carminati, A., Jousset, A. & Scheu, S. Protists and collembolans alter microbial community composition, C dynamics and soil aggregation in simplified consumer–prey systems. Biogeosciences 17, 4961–4980 (2020). This study is a comprehensive analysis of the complex interactions among soil structure, soil organic matter and soil organisms within trophic networks.

    ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Laurent Philippot.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks Samiran Banerjee and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Adaptative radiation

The rapid diversification of species as a consequence of adaption to different environmental conditions.

Ammonification

The respiratory reduction of nitrate to ammonium when oxygen is limiting.

Arbuscular mycorrhizal fungi

Fungi that form a symbiosis with plants by penetrating the cortical cells of the roots of a vascular plant.

Denitrification

The respiratory reduction of nitrogen oxides to N2O and N2 when oxygen is limiting.

Extracellular polymeric substances

(EPSs). Polymeric organic compounds (mainly polysaccharides, proteins and nucleic acids) that are produced and released by microorganisms.

Hydrophobins

Small proteins produced by filamentous fungi that can spontaneously self-assemble and change the polarity of a surface.

Niche construction theory

The concept that organisms can modify their environment and that, in turn, these changes influence the organisms.

Nitrification

Aerobic oxidation of ammonium to nitrite and then to nitrate to generate energy.

Photosynthetic autotrophs

An organism that uses light energy to fix CO2.

Siderophores

Organic compounds that are produced and released by microorganisms to make otherwise poorly soluble Fe(III) ions bioavailable for the cells and to facilitate their uptake.

Soil micropores

Pores in which water is essentially held by capillary forces (≤0.08 mm), nearly immobile and in which solute movement is limited to diffusion.

Weathering

The process of breaking down or dissolving solids (minerals and rocks) by biological, chemical or physical processes.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Philippot, L., Chenu, C., Kappler, A. et al. The interplay between microbial communities and soil properties. Nat Rev Microbiol 22, 226–239 (2024). https://doi.org/10.1038/s41579-023-00980-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-023-00980-5

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology