Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Gastric neuroendocrine neoplasms

Subjects

Abstract

Gastric neuroendocrine neoplasms (gNENs) display peculiar site-specific features among all NENs. Their incidence and prevalence have been rising in the past few decades. gNENs comprise gastric neuroendocrine carcinomas (gNECs) and gastric neuroendocrine tumours (gNETs), the latter further classified into three types. Type I anatype II gNETs are gastrin-dependent and develop in chronic atrophic gastritis and as part of Zollinger–Ellison syndrome within a multiple endocrine neoplasia type 1 syndrome (MEN1), respectively. Type III or sporadic gNETs develop in the absence of hypergastrinaemia and in the context of a near-normal or inflamed gastric mucosa. gNECs can also develop in the context of variable atrophic, relatively normal or inflamed gastric mucosa. Each gNEN type has different clinical characteristics and requires a different multidisciplinary approach in expert dedicated centres. Type I gNETs are managed mainly by endoscopy or surgery, whereas the treatment of type II gNETs largely depends on the management of the concomitant MEN1. Type III gNETs may require both locoregional approaches and systemic treatments; NECs are often metastatic and therefore require systemic treatment. Specific data regarding the systemic treatment of gNENs are lacking and are derived from the treatment of intestinal NETs and NECs. An enhanced understanding of molecular and clinical pathophysiology is needed to improve the management and outcomes of patients’ gNETs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Epidemiology and prognosis of gastric neuroendocrine neoplasms.
Fig. 2: Pathophysiology of gastric neuroendocrine tumour.
Fig. 3: Different endoscopic aspects of gastric neuroendocrine neoplasms.
Fig. 4: Appearance of type III gastric neuroendocrine tumour.
Fig. 5: Functional imaging in gastric neuroendocrine neoplasms.
Fig. 6: Management algorithm for type I gastric neuroendocrine tumours.
Fig. 7: Management algorithm for type III gastric neuroendocrine neoplasms.

Similar content being viewed by others

References

  1. WHO Classification of Tumours Editorial Board. WHO Classification of Endocrine and Neuroendocrine Tumours (WHO, 2022).

  2. WHO Classification of Tumours Editorial Board. WHO Classification of Digestive Tumours (WHO, 2019).

  3. Rindi, G. et al. Overview of the 2022 WHO Classification of Neuroendocrine Neoplasms. Endocr. Pathol. 33, 115–154 (2022).

    Article  CAS  PubMed  Google Scholar 

  4. Raj, N. et al. Real-time genomic characterization of metastatic pancreatic neuroendocrine tumors has prognostic implications and identifies potential germline actionability. JCO Precis. Oncol. 2018, PO.17.00267 (2018).

    PubMed  Google Scholar 

  5. Rindi, G., Luinetti, O., Cornaggia, M., Capella, C. & Solcia, E. Three subtypes of gastric argyrophil carcinoid and the gastric neuroendocrine carcinoma: a clinicopathologic study. Gastroenterology 104, 994–1006 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Rindi, G. et al. Gastric carcinoids and neuroendocrine carcinomas: pathogenesis, pathology, and behavior. World J. Surg. 20, 168–172 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Rindi, G. et al. ECL cell tumor and poorly differentiated endocrine carcinoma of the stomach: prognostic evaluation by pathological analysis. Gastroenterology 116, 532–542 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Vanoli, A. et al. Prognostic evaluations tailored to specific gastric neuroendocrine neoplasms: analysis of 200 cases with extended follow-up. Neuroendocrinology 107, 114–126 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Dasari, A. et al. Trends in the incidence, prevalence, and survival outcomes in patients with neuroendocrine tumors in the United States. JAMA Oncol. 3, 1335–1342 (2017). This is the largest population-based study report to date to highlight epidemiology of neuroendocrine tumours, including those of the stomach.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Rustgi, S. D. et al. Epidemiology of gastric malignancies 2000–2018 according to histology: a population-based analysis of incidence and temporal trends. Clin. Gastroenterol. Hepatol. 21, 3285–3295.e8 (2023).

    Article  CAS  PubMed  Google Scholar 

  11. IARC. Cancer Today stomach cancer data. WHO https://gco.iarc.fr/today/en/dataviz/tables?mode=population&cancers=7 (2022).

  12. Ellis, L., Shale, M. J. & Coleman, M. P. Carcinoid tumors of the gastrointestinal tract: trends in incidence in England since 1971. Am. J. Gastroenterol. 105, 2563–2569 (2010).

    Article  PubMed  Google Scholar 

  13. Carmack, S. W., Genta, R. M., Schuler, C. M. & Saboorian, M. H. The current spectrum of gastric polyps: a 1-year national study of over 120,000 patients. Am. J. Gastroenterol. 104, 1524–1532 (2009).

    Article  PubMed  Google Scholar 

  14. Vannella, L. et al. Development of type I gastric carcinoid in patients with chronic atrophic gastritis. Aliment. Pharmacol. Ther. 33, 1361–1369 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Shah, S. C., Piazuelo, M. B., Kuipers, E. J. & Li, D. AGA clinical practice update on the diagnosis and management of atrophic gastritis: expert review. Gastroenterology 161, 1325–1332.e7 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Garcia-Carbonero, R. et al. Incidence, patterns of care and prognostic factors for outcome of gastroenteropancreatic neuroendocrine tumors (GEP-NETs): results from the National Cancer Registry of Spain (RGETNE). Ann. Oncol. 21, 1794–1803 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Genus, T. S. E. et al. Impact of neuroendocrine morphology on cancer outcomes and stage at diagnosis: a UK nationwide cohort study 2013–2015. Br. J. Cancer 121, 966–972 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Palepu, J. et al. Trends in diagnosis of gastroenteropancreatic neuroendocrine tumors (GEP-NETs) in India: a report of multicenter data from a web-based registry. Indian. J. Gastroenterol. 36, 445–451 (2017).

    Article  PubMed  Google Scholar 

  19. Fan, J.-H. et al. A nation-wide retrospective epidemiological study of gastroenteropancreatic neuroendocrine neoplasms in china. Oncotarget 8, 71699–71708 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tsai, H.-J. et al. The epidemiology of neuroendocrine tumors in Taiwan: a nation-wide cancer registry-based study. PLoS ONE 8, e62487 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Masui, T., Ito, T., Komoto, I. & Uemoto, S. Recent epidemiology of patients with gastro-entero-pancreatic neuroendocrine neoplasms (GEP-NEN) in Japan: a population-based study. BMC Cancer 20, 1104 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Eom, B. W., Jung, K.-W., Won, Y.-J., Yang, H. & Kim, Y.-W. Trends in gastric cancer incidence according to the clinicopathological characteristics in Korea, 1999–2014. Cancer Res. Treat. 50, 1343–1350 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lahner, E. et al. Gastric cancer in patients with type I gastric carcinoids. Gastric Cancer 18, 564–570 (2015).

    Article  PubMed  Google Scholar 

  24. Lenti, M. V. et al. Autoimmune gastritis. Nat. Rev. Dis. Prim. 6, 56 (2020).

    Article  PubMed  Google Scholar 

  25. Vannella, L., Lahner, E., Osborn, J. & Annibale, B. Systematic review: gastric cancer incidence in pernicious anaemia. Aliment. Pharmacol. Ther. 37, 375–382 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Miceli, E. et al. Long-term natural history of autoimmune gastritis: results from a prospective, monocentric series. Am. J. Gastroenterol. https://doi.org/10.14309/ajg.0000000000002619 (2023).

  27. Panzuto, F. et al. European Neuroendocrine Tumor Society (ENETS) 2023 guidance paper for gastroduodenal neuroendocrine tumours (NETs) G1–G3. J. Neuroendocrinol. 35, e13306 (2023). This paper discusses the guidelines of the European Neuroendocrine Tumor Society (ENETS) regarding the clinical management of gastric neuroendocrine tumours.

    Article  CAS  PubMed  Google Scholar 

  28. Yao, J. C. et al. One hundred years after ‘carcinoid’: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J. Clin. Oncol. 26, 3063–3072 (2008).

    Article  PubMed  Google Scholar 

  29. Panzuto, F. et al. Tumour type and size are prognostic factors in gastric neuroendocrine neoplasia: a multicentre retrospective study. Dig. Liver Dis. 51, 1456–1460 (2019). This is a large multicentre retrospective study to evaluate prognostic factors in gastric neuroendocrine tumours.

    Article  PubMed  Google Scholar 

  30. Felder, S. et al. Gastric neuroendocrine neoplasias: manifestations and comparative outcomes. Endocr. Relat. Cancer 26, 751–763 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Exarchou, K., Howes, N. & Pritchard, D. M. Systematic review: management of localised low‐grade upper gastrointestinal neuroendocrine tumours. Aliment. Pharmacol. Ther. 51, 1247–1267 (2020).

    Article  PubMed  Google Scholar 

  32. Laffi, A. et al. Gastric neuroendocrine tumors (g-NETs): a systematic review of the management and outcomes of type 3 g-NETs. Cancers 15, 2202 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Min, B.-H. et al. Clinicopathological features and outcome of type 3 gastric neuroendocrine tumours. Br. J. Surg. 105, 1480–1486 (2018).

    Article  PubMed  Google Scholar 

  34. Engevik, A. C., Kaji, I. & Goldenring, J. R. The physiology of the gastric parietal cell. Physiol. Rev. 100, 573–602 (2020). This is a paper on the state-of-the-art knowledge about gastric physiology, which is fundamental to understand pathogenesis and management of type I and type II gNETs.

    Article  CAS  PubMed  Google Scholar 

  35. Jensen, R. T. & Ito, T. in Endotext (eds Feingold, K. et al.) (Endotext, 2023).

  36. Amedei, A. et al. Molecular mimicry between Helicobacter pylori antigens and H+,K+-adenosine triphosphatase in human gastric autoimmunity. J. Exp. Med. 198, 1147–1156 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lundell, L., Vieth, M., Gibson, F., Nagy, P. & Kahrilas, P. J. Systematic review: the effects of long‐term proton pump inhibitor use on serum gastrin levels and gastric histology. Aliment. Pharmacol. Ther. 42, 649–663 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Vanoli, A., Parente, P., Fassan, M., Mastracci, L. & Grillo, F. Gut inflammation and tumorigenesis: every site has a different tale to tell. Intern. Emerg. Med. 18, 2169–2179 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Arnold, R. et al. Antral gastrin-producing G-cells and somatostatin-producing D-cells in different states of gastric acid secretion. Gut 23, 285–291 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Annibale, B. et al. Antral gastrin cell hyperfunction and Helicobacter pylori infection. Aliment. Pharmacol. Ther. 10, 607–615 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Rindi, G. et al. Helicobacter pylori infection in children with antral gastrin cell hyperfunction. J. Pediatr. Gastroenterol. Nutr. 18, 152–158 (1994).

    CAS  PubMed  Google Scholar 

  42. Pashankar, D. S., Israel, D. M., Jevon, G. P. & Buchan, A. M. J. Effect of long-term omeprazole treatment on antral G and D cells in children. J. Pediatr. Gastroenterol. Nutr. 33, 537–542 (2001).

    CAS  PubMed  Google Scholar 

  43. Solcia, E. et al. Gastric carcinoids and related endocrine growths. Digestion 35, 3–22 (1986).

    Article  PubMed  Google Scholar 

  44. Rindi, G. & Solcia, E. Endocrine hyperplasia and dysplasia in the pathogenesis of gastrointestinal and pancreatic endocrine tumors. Gastroenterol. Clin. North. Am. 36, 851–865 (2007).

    Article  PubMed  Google Scholar 

  45. Solcia, E. et al. Histopathological classification of nonantral gastric endocrine growths in man. Digestion 41, 185–200 (1988).

    Article  CAS  PubMed  Google Scholar 

  46. Calvete, O. et al. Exome sequencing identifies ATP4A gene as responsible of an atypical familial type I gastric neuroendocrine tumour. Hum. Mol. Genet. 24, 2914–2922 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Calvete, O. et al. A knockin mouse model for human ATP4a R703C mutation identified in familial gastric neuroendocrine tumors recapitulates the premalignant condition of the human disease and suggests new therapeutic strategies. Dis. Model. Mech. 9, 975–984 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Langhans, N. et al. Abnormal gastric histology and decreased acid production in cholecystokinin-B/gastrin receptor-deficient mice. Gastroenterology 112, 280–286 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Benítez, J., Marra, R., Reyes, J. & Calvete, O. A genetic origin for acid–base imbalance triggers the mitochondrial damage that explains the autoimmune response and drives to gastric neuroendocrine tumours. Gastric Cancer 23, 52–63 (2020).

    Article  PubMed  Google Scholar 

  50. Furlan, D. et al. Different molecular profiles characterize well-differentiated endocrine tumors and poorly differentiated endocrine carcinomas of the gastroenteropancreatic tract. Clin. Cancer Res. 10, 947–957 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. D’Adda, T., Keller, G., Bordi, C. & Höfler, H. Loss of heterozygosity in 11q13-14 regions in gastric neuroendocrine tumors not associated with multiple endocrine neoplasia type 1 syndrome. Lab. Invest. 79, 671–677 (1999).

    PubMed  Google Scholar 

  52. Toliat, M. R., Berger, W., Ropers, H. H., Neuhaus, P. & Wiedenmann, B. Mutations in the MEN I gene in sporadic neuroendocrine tumours of gastroenteropancreatic system. Lancet 350, 1223 (1997).

    Article  CAS  PubMed  Google Scholar 

  53. Bordi, C. Neuroendocrine pathology of the stomach: the Parma contribution. Endocr. Pathol. 25, 171–180 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Chatzipanagiotou, O. et al. All you need to know about gastrinoma today | Gastrinoma and Zollinger-Ellison syndrome: a thorough update. J. Neuroendocrinol. 35, e13267 (2023).

    Article  CAS  PubMed  Google Scholar 

  55. Debelenko, L. V. et al. The multiple endocrine neoplasia type I gene locus is involved in the pathogenesis of type II gastric carcinoids. Gastroenterology 113, 773–781 (1997).

    Article  CAS  PubMed  Google Scholar 

  56. Trinh, V. Q., Shi, C. & Ma, C. Gastric neuroendocrine tumours from long‐term proton pump inhibitor users are indolent tumours with good prognosis. Histopathology 77, 865–876 (2020).

    Article  PubMed  Google Scholar 

  57. Abraham, S. C., Carney, J. A., Ooi, A., Choti, M. A. & Argani, P. Achlorhydria, parietal cell hyperplasia, and multiple gastric carcinoids. Am. J. Surgical Pathol. 29, 969–975 (2005).

    Article  Google Scholar 

  58. Ooi, A. et al. An unusual case of multiple gastric carcinoids associated with diffuse endocrine cell hyperplasia and parietal cell hypertrophy. Endocr. Pathol. 6, 229–237 (1995).

    Article  PubMed  Google Scholar 

  59. WHO Classification of Tumours Editorial Board. WHO Classification of Tumours: Digestive System Tumours 5th edn, Vol. 1 (WHO, 2019).

  60. Venizelos, A. et al. Germline pathogenic variants in patients with high-grade gastroenteropancreatic neuroendocrine neoplasms. Endocr. Relat. Cancer 30, e230057 (2023).

    Article  CAS  PubMed  Google Scholar 

  61. Taboada, R. et al. Clinicopathological and molecular profile of grade 3 gastroenteropancreatic neuroendocrine neoplasms. J. Neuroendocrinol. 34, e13099 (2022).

    Article  CAS  PubMed  Google Scholar 

  62. Yachida, S. et al. Comprehensive genomic profiling of neuroendocrine carcinomas of the gastrointestinal system. Cancer Discov. 12, 692–711 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Carabotti, M. et al. Upper gastrointestinal symptoms in autoimmune gastritis: a cross-sectional study. Medicine 96, e5784 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lenti, M. V. et al. Cell blood count alterations and patterns of anaemia in autoimmune atrophic gastritis at diagnosis: a multicentre study. J. Clin. Med. 8, 1992 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cellini, M. et al. Hashimoto’s thyroiditis and autoimmune gastritis. Front. Endocrinol. 8, 92 (2017).

    Article  Google Scholar 

  66. Kalkan, Ç. & Soykan, I. Polyautoimmunity in autoimmune gastritis. Eur. J. Intern. Med. 31, 79–83 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. Zelissen, P. M., Bast, E. J. & Croughs, R. J. Associated autoimmunity in Addison’s disease. J. Autoimmun. 8, 121–30 (1995).

    Article  CAS  PubMed  Google Scholar 

  68. Dixon, M. F., Genta, R. M., Yardley, J. H. & Correa, P. Classification and grading of gastritis. Am. J. Surg. Pathol. 20, 1161–1181 (1996).

    Article  CAS  PubMed  Google Scholar 

  69. Conti, L. et al. Seronegative autoimmune atrophic gastritis is more common in elderly patients. Dig. Liver Dis. 52, 1310–1314 (2020).

    Article  CAS  PubMed  Google Scholar 

  70. Hershko, C. et al. Variable hematologic presentation of autoimmune gastritis: age-related progression from iron deficiency to cobalamin depletion. Blood 107, 1673–1679 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Lehy, T., Cadiot, G., Mignon, M., Ruszniewski, P. & Bonfils, S. Influence of multiple endocrine neoplasia type 1 on gastric endocrine cells in patients with the Zollinger-Ellison syndrome. Gut 33, 1275–1279 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Berna, M. J. et al. A prospective study of gastric carcinoids and enterochromaffin-like cell changes in multiple endocrine neoplasia type 1 and Zollinger-Ellison syndrome: identification of risk factors. J. Clin. Endocrinol. Metab. 93, 1582–1591 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Roy, P. K. et al. Zollinger-Ellison syndrome: clinical presentation in 261 patients. Medicine 79, 379–411 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Ito, T., Cadiot, G. & Jensen, R. T. Diagnosis of Zollinger-Ellison syndrome: increasingly difficult. World J. Gastroenterol. 18, 5495–5503 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Metz, D. C., Cadiot, G., Poitras, P., Ito, T. & Jensen, R. T. Diagnosis of Zollinger-Ellison syndrome in the era of PPIs, faulty gastrin assays, sensitive imaging and limited access to acid secretory testing. Int. J. Endocr. Oncol. 4, 167–185 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Berna, M. J., Hoffmann, K. M., Serrano, J., Gibril, F. & Jensen, R. T. Serum gastrin in Zollinger-Ellison syndrome: I. Prospective study of fasting serum gastrin in 309 patients from the National Institutes of Health and comparison with 2229 cases from the literature. Medicine 85, 295–330 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Modlin, I. M. et al. Chromogranin A—biological function and clinical utility in neuro endocrine tumor disease. Ann. Surg. Oncol. 17, 2427–2443 (2010).

    Article  PubMed  Google Scholar 

  78. Pimentel-Nunes, P. et al. Management of epithelial precancerous conditions and lesions in the stomach (MAPS II): European Society of Gastrointestinal Endoscopy (ESGE), European Helicobacter and Microbiota Study Group (EHMSG), European Society of Pathology (ESP), and Sociedade Portuguesa de Endoscopia Digestiva (SPED) guideline update 2019. Endoscopy 51, 365–388 (2019).

    Article  PubMed  Google Scholar 

  79. O’Toole, D. et al. AJCC Cancer Staging System, Version nine: Neuroendocrine Tumors of the Stomach (AJCC, 2023).

  80. Deprez, P. H. et al. Endoscopic management of subepithelial lesions including neuroendocrine neoplasms: European Society of Gastrointestinal Endoscopy Guideline. Endoscopy 54, 412–429 (2022).

    Article  PubMed  Google Scholar 

  81. Borbath, I. et al. ENETS standardized (synoptic) reporting for endoscopy in neuroendocrine tumors. J. Neuroendocrinol. 34, e13105 (2022). This is a reference paper for standardized and high-quality endoscopic assessment of gNETs which is crucial for proper management of these tumours.

    Article  CAS  PubMed  Google Scholar 

  82. Rindi, G. et al. TNM staging of foregut (neuro)endocrine tumors: a consensus proposal including a grading system. Virchows Arch. 449, 395–401 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Esposito, G. et al. Narrow band imaging characteristics of gastric polypoid lesions: a single-center prospective pilot study. Eur. J. Gastroenterol. Hepatol. 32, 701–705 (2020).

    Article  CAS  PubMed  Google Scholar 

  84. The Paris endoscopic classification of superficial neoplastic lesions: esophagus, stomach, and colon: November 30 to December 1, 2002. Gastrointest. Endosc. 58, S3–S43 (2003).

    Article  Google Scholar 

  85. Bozkurt, M. F. et al. Guideline for PET/CT imaging of neuroendocrine neoplasms with 68Ga-DOTA-conjugated somatostatin receptor targeting peptides and 18F-DOPA. Eur. J. Nucl. Med. Mol. Imaging 44, 1588–1601 (2017).

    Article  CAS  PubMed  Google Scholar 

  86. Sundin, A. et al. ENETS consensus guidelines for the standards of care in neuroendocrine tumors: radiological, nuclear medicine & hybrid imaging. Neuroendocrinology 105, 212–244 (2017).

    Article  CAS  PubMed  Google Scholar 

  87. Hope, T. A. et al. SNMMI procedure standard/EANM practice guideline for SSTR PET: imaging neuroendocrine tumors. J. Nucl. Med. 64, 204–210 (2023).

    Article  CAS  PubMed  Google Scholar 

  88. Gabriel, M. et al. 68Ga-DOTA-Tyr3-octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT. J. Nucl. Med. 48, 508–518 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Srirajaskanthan, R. et al. The role of 68Ga-DOTATATE PET in patients with neuroendocrine tumors and negative or equivocal findings on 111In-DTPA-octreotide scintigraphy. J. Nucl. Med. 51, 875–882 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. Skoura, E. et al. The impact of 68Ga-DOTATATE PET/CT imaging on management of patients with neuroendocrine tumors: experience from a national referral center in the United Kingdom. J. Nucl. Med. 57, 34–40 (2016).

    Article  CAS  PubMed  Google Scholar 

  91. Ambrosini, V. et al. 68Ga-DOTA-NOC PET/CT in comparison with CT for the detection of bone metastasis in patients with neuroendocrine tumours. Eur. J. Nucl. Med. Mol. Imaging 37, 722–727 (2010).

    Article  PubMed  Google Scholar 

  92. Putzer, D. et al. Bone metastases in patients with neuroendocrine tumor: 68Ga-DOTA-Tyr3-octreotide PET in comparison to CT and bone scintigraphy. J. Nucl. Med. 50, 1214–1221 (2009).

    Article  PubMed  Google Scholar 

  93. Rinzivillo, M. et al. Usefulness of 68-gallium PET in type I gastric neuroendocrine neoplasia: a case series. J. Clin. Med. 11, 1641 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Laird, A. M. & Libutti, S. K. Management of other gastric and duodenal neuroendocrine tumors. Surg. Oncol. Clin. N. Am. 29, 253–266 (2020).

    Article  PubMed  Google Scholar 

  95. Thomas, D. et al. Long-term follow-up of a large series of patients with type 1 gastric carcinoid tumors: data from a multicenter study. Eur. J. Endocrinol. 168, 185–193 (2013).

    Article  CAS  PubMed  Google Scholar 

  96. Cavallaro, A. et al. The role of 68-Ga-DOTATOC CT-PET in surgical tactic for gastric neuroendocrine tumors treatment: our experience: a case report. Int. J. Surg. 12, S225–S231 (2014).

    Article  PubMed  Google Scholar 

  97. Auerbach, M. S., Pisegna, J. R., Kim, S. & Yu, R. Three cases of diffuse, intense stomach uptake on DOTATATE PET. Clin. Nucl. Med. 45, 813–816 (2020).

    Article  PubMed  Google Scholar 

  98. Hope, T. A. et al. Appropriate use criteria for somatostatin receptor PET imaging in neuroendocrine tumors. J. Nucl. Med. 59, 66–74 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hicks, R. J. et al. ENETS consensus guidelines for the standards of care in neuroendocrine neoplasms: peptide receptor radionuclide therapy with radiolabelled somatostatin analogues. Neuroendocrinology 105, 295–309 (2017).

    Article  CAS  PubMed  Google Scholar 

  100. Jayasekera, M., Sartin, S. & Bhargava, P. Ga-68 DOTATATE PET/CT in a patient with Zollinger-Ellison syndrome. Radiol. Case Rep. 18, 1046–1048 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Chan, D. L. et al. Dual [68Ga]DOTATATE and [18F]FDG PET/CT in patients with metastatic gastroenteropancreatic neuroendocrine neoplasms: a multicentre validation of the NETPET score. Br. J. Cancer 128, 549–555 (2023).

    Article  CAS  PubMed  Google Scholar 

  102. Chan, D. L. et al. High metabolic tumour volume on 18-fluorodeoxyglucose positron emission tomography predicts poor survival from neuroendocrine neoplasms. Neuroendocrinology 110, 950–958 (2020).

    Article  CAS  PubMed  Google Scholar 

  103. Binderup, T., Knigge, U., Loft, A., Federspiel, B. & Kjaer, A. 18F-Fluorodeoxyglucose positron emission tomography predicts survival of patients with neuroendocrine tumors. Clin. Cancer Res. 16, 978–985 (2010).

    Article  CAS  PubMed  Google Scholar 

  104. Karfis, I. et al. Prognostic value of a three-scale grading system based on combining molecular imaging with 68Ga-DOTATATE and 18F-FDG PET/CT in patients with metastatic gastroenteropancreatic neuroendocrine neoplasias. Oncotarget 11, 589–599 (2020). This study highlights the clinical importance of functional imaging with both SSTR and 18F-fluorodeoxyglucose PET–CT.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Magi, L. et al. Role of [18F]FDG PET/CT in the management of G1 gastro-entero-pancreatic neuroendocrine tumors. Endocrine 76, 484–490 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ambrosini, V. et al. Consensus on molecular imaging and theranostics in neuroendocrine neoplasms. Eur. J. Cancer 146, 56–73 (2021). European consensus on the use of SSTR imaging in NEN, including gNENs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Chung, C.-S. et al. Clinical features and outcomes of gastric neuroendocrine tumors after endoscopic diagnosis and treatment: a Digestive Endoscopy Society of Tawian (DEST) multicenter study. Medicine 97, e12101 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Ye, H., Yuan, Y., Chen, P. & Zheng, Q. Risk factors for metastasis and survival of patients with T1 gastric neuroendocrine carcinoma treated with endoscopic therapy versus surgical resection. Surg. Endosc. 36, 6162–6169 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Merola, E. et al. Type I gastric carcinoids: a prospective study on endoscopic management and recurrence rate. Neuroendocrinology 95, 207–213 (2012).

    Article  CAS  PubMed  Google Scholar 

  110. Uygun, A. et al. Long‐term results of endoscopic resection for type I gastric neuroendocrine tumors. J. Surg. Oncol. 109, 71–74 (2014).

    Article  PubMed  Google Scholar 

  111. Kim, H. H. et al. The efficacy of endoscopic submucosal dissection of type I gastric carcinoid tumors compared with conventional endoscopic mucosal resection. Gastroenterol. Res. Pract. 2014, 253860 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Rossi, R. E., Invernizzi, P., Mazzaferro, V. & Massironi, S. Response and relapse rates after treatment with long‐acting somatostatin analogs in multifocal or recurrent type‐1 gastric carcinoids: a systematic review and meta‐analysis. United Eur. Gastroenterol. J. 8, 140–147 (2020).

    Article  Google Scholar 

  113. Campana, D. et al. Clinical management of patients with gastric neuroendocrine neoplasms associated with chronic atrophic gastritis: a retrospective, multicentre study. Endocrine 51, 131–139 (2016). Multicentre retrospective study on the clinical and prognostic characterization of type I gNETs.

    Article  CAS  PubMed  Google Scholar 

  114. Sebastian-Valles, F. et al. Chronic treatment with somatostatin analogues in recurrent type 1 gastric neuroendocrine tumors. Biomedicines 11, 872 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Boyce, M. et al. Netazepide, a gastrin/cholecystokinin‐2 receptor antagonist, can eradicate gastric neuroendocrine tumours in patients with autoimmune chronic atrophic gastritis. Br. J. Clin. Pharmacol. 83, 466–475 (2017).

    Article  CAS  PubMed  Google Scholar 

  116. Fossmark, R. et al. Treatment of gastric carcinoids type 1 with the gastrin receptor antagonist netazepide (YF476) results in regression of tumours and normalisation of serum chromogranin A. Aliment. Pharmacol. Ther. 36, 1067–1075 (2012).

    Article  CAS  PubMed  Google Scholar 

  117. Thakker, R. V. et al. Clinical practice guidelines for multiple endocrine neoplasia type 1 (MEN1). J. Clin. Endocrinol. Metab. 97, 2990–3011 (2012).

    Article  CAS  PubMed  Google Scholar 

  118. Delle Fave, G. et al. ENETS consensus guidelines update for gastroduodenal neuroendocrine neoplasms. Neuroendocrinology 103, 119–124 (2016).

    Article  CAS  PubMed  Google Scholar 

  119. Tomassetti, P. et al. Treatment of type II gastric carcinoid tumors with somatostatin analogues. N. Engl. J. Med. 343, 551–554 (2000). Pivotal study showing the effectiveness of somatostatin analogues in the treatment of local unresectable gastrin-dependent type II gNETs.

    Article  CAS  PubMed  Google Scholar 

  120. Exarchou, K. et al. Is local excision sufficient in selected grade 1 or 2 type III gastric neuroendocrine neoplasms? Endocrine 74, 421–429 (2021).

    Article  CAS  PubMed  Google Scholar 

  121. Hanna, A. et al. Gastric neuroendocrine tumors: reappraisal of type in predicting outcome. Ann. Surg. Oncol. 28, 8838–8846 (2021).

    Article  PubMed  Google Scholar 

  122. White, B. E. et al. Incidence and survival of neuroendocrine neoplasia in England 1995-2018: a retrospective, population-based study. Lancet Reg. Health Eur. 23, 100510 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Yao, J. C. et al. Everolimus for the treatment of advanced, non-functional neuroendocrine tumours of the lung or gastrointestinal tract (RADIANT-4): a randomised, placebo-controlled, phase 3 study. Lancet 387, 968–977 (2016).

    Article  CAS  PubMed  Google Scholar 

  124. de Mestier, L. et al. Treatment outcomes of advanced digestive well-differentiated grade 3 NETs. Endocr. Relat. Cancer 28, 549–561 (2021).

    Article  PubMed  Google Scholar 

  125. Rinke, A. et al. Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: a report from the PROMID Study Group. J. Clin. Oncol. 27, 4656–4663 (2009).

    Article  CAS  PubMed  Google Scholar 

  126. Pavel, M. et al. Efficacy and safety of high-dose lanreotide autogel in patients with progressive pancreatic or midgut neuroendocrine tumours: CLARINET FORTE phase 2 study results. Eur. J. Cancer 157, 403–414 (2021).

    Article  CAS  PubMed  Google Scholar 

  127. Strosberg, J. et al. Phase 3 trial of 177Lu-Dotatate for midgut neuroendocrine tumors. N. Engl. J. Med. 376, 125–135 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Xu, J. et al. Surufatinib in advanced extrapancreatic neuroendocrine tumours (SANET-ep): a randomised, double-blind, placebo-controlled, phase 3 study. Lancet Oncol. 21, 1500–1512 (2020).

    Article  CAS  PubMed  Google Scholar 

  129. Zappi, A. et al. Chemotherapy in well differentiated neuroendocrine tumors (NET) G1, G2, and G3: a narrative review. J. Clin. Med. 12, 717 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Niederle, B. et al. ENETS consensus guidelines update for neuroendocrine neoplasms of the jejunum and ileum. Neuroendocrinology 103, 125–138 (2016).

    Article  CAS  PubMed  Google Scholar 

  131. Brighi, N. et al. Biliary stone disease in patients receiving somatostatin analogs for neuroendocrine neoplasms. A retrospective observational study. Dig. Liver Dis. 51, 689–694 (2019).

    Article  CAS  PubMed  Google Scholar 

  132. Brighi, N. et al. Biliary stone disease in patients with neuroendocrine tumors treated with somatostatin analogs: a multicenter study. Oncologist 25, 259–265 (2020).

    Article  CAS  PubMed  Google Scholar 

  133. Brabander, T. et al. Long-term efficacy, survival, and safety of [177Lu-DOTA0,Tyr3]octreotate in patients with gastroenteropancreatic and bronchial neuroendocrine tumors. Clin. Cancer Res. 23, 4617–4624 (2017).

    Article  CAS  PubMed  Google Scholar 

  134. Mitjavila, M. et al. Efficacy of [177Lu]Lu-DOTATATE in metastatic neuroendocrine neoplasms of different locations: data from the SEPTRALU study. Eur. J. Nucl. Med. Mol. Imaging 50, 2486–2500 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Pavel, M. et al. Gastroenteropancreatic neuroendocrine neoplasms: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 31, 844–860 (2020).

    Article  CAS  PubMed  Google Scholar 

  136. Shah, M. H. et al. Neuroendocrine and adrenal tumors, version 2.2021, NCCN clinical practice guidelines in oncology. J. Natl Compr. Cancer Netw. 19, 839–868 (2021).

    Article  CAS  Google Scholar 

  137. Ricci, C. et al. Treatment of advanced gastro-entero-pancreatic neuro-endocrine tumors: a systematic review and network meta-analysis of phase III randomized controlled trials. Cancers 13, 358 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Chan, J. et al. LBA53 Alliance A021602: phase III, double-blinded study of cabozantinib versus placebo for advanced neuroendocrine tumors (NET) after progression on prior therapy (CABINET). Ann. Oncol. 34 (Suppl. 2), S1292 (2023).

    Article  Google Scholar 

  139. Garcia-Carbonero, R. et al. Advances in the treatment of gastroenteropancreatic neuroendocrine carcinomas: are we moving forward? Endocr. Rev. 44, 724–736 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Sorbye, H. et al. European Neuroendocrine Tumor Society (ENETS) 2023 guidance paper for digestive neuroendocrine carcinoma. J. Neuroendocrinol. 35, e13249 (2023).

    Article  CAS  PubMed  Google Scholar 

  141. Lamberti, G. et al. Targeted genomic profiling and chemotherapy outcomes in grade 3 gastro-entero-pancreatic neuroendocrine tumors (G3 GEP-NET). Diagnostics 13, 1595 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Dasari, A., Shen, C., Devabhaktuni, A., Nighot, R. & Sorbye, H. Survival according to primary tumor location, stage, and treatment patterns in locoregional gastroenteropancreatic high-grade neuroendocrine carcinomas. Oncologist 27, 299–306 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Schmitz, R., Mao, R., Moris, D., Strickler, J. H. & Blazer, D. G. Impact of postoperative chemotherapy on the survival of patients with high-grade gastroenteropancreatic neuroendocrine carcinoma. Ann. Surg. Oncol. 28, 114–120 (2021).

    Article  PubMed  Google Scholar 

  144. Morizane, C. et al. Effectiveness of etoposide and cisplatin vs irinotecan and cisplatin therapy for patients with advanced neuroendocrine carcinoma of the digestive system: the TOPIC-NEC phase 3 randomized clinical trial. JAMA Oncol. 8, 1447–1455 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  145. McNamara, M. G. et al. NET-02: a randomised, non-comparative, phase II trial of nal-IRI/5-FU or docetaxel as second-line therapy in patients with progressive poorly differentiated extra-pulmonary neuroendocrine carcinoma. EClinicalMedicine 60, 102015 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Walter, T. et al. Bevacizumab plus FOLFIRI after failure of platinum–etoposide first-line chemotherapy in patients with advanced neuroendocrine carcinoma (PRODIGE 41-BEVANEC): a randomised, multicentre, non-comparative, open-label, phase 2 trial. Lancet Oncol. 24, 297–306 (2023).

    Article  CAS  PubMed  Google Scholar 

  147. Maio, M. et al. Pembrolizumab in microsatellite instability high or mismatch repair deficient cancers: updated analysis from the phase II KEYNOTE-158 study. Ann. Oncol. 33, 929–938 (2022).

    Article  CAS  PubMed  Google Scholar 

  148. Riechelmann, R. P., Taboada, R. G., de Jesus, V. H. F., Iglesia, M. & Trikalinos, N. A. Therapy sequencing in patients with advanced neuroendocrine neoplasms. Am. Soc. Clin. Oncol. Educ. Book. 43, e389278 (2023). ASCO educational book about the challenging management of advanced metastatic NEN, including gNENs.

    Article  PubMed  Google Scholar 

  149. Subbiah, V. et al. Pan-cancer efficacy of pralsetinib in patients with RET fusion-positive solid tumors from the phase 1/2 ARROW trial. Nat. Med. 28, 1640–1645 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Sigal, D. S. et al. Comprehensive genomic profiling identifies novel NTRK fusions in neuroendocrine tumors. Oncotarget 9, 35809–35812 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Doebele, R. C. et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1–2 trials. Lancet Oncol. 21, 271–282 (2020).

    Article  CAS  PubMed  Google Scholar 

  152. Hong, D. S. et al. Larotrectinib in patients with TRK fusion-positive solid tumours: a pooled analysis of three phase 1/2 clinical trials. Lancet Oncol. 21, 531–540 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Idrees, K. et al. Frequent BRAF mutations suggest a novel oncogenic driver in colonic neuroendocrine carcinoma. J. Surg. Oncol. 117, 284–289 (2018).

    Article  CAS  PubMed  Google Scholar 

  154. Singh, S. et al. Patient-reported burden of a neuroendocrine tumor (NET) diagnosis: results from the first global survey of patients with NETs. J. Glob. Oncol. 3, 43–53 (2017).

    Article  PubMed  Google Scholar 

  155. Gosain, R. et al. Health-related quality of life (HRQoL) in neuroendocrine tumors: a systematic review. Cancers 14, 1428 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Yadegarfar, G. et al. Validation of the EORTC QLQ-GINET21 questionnaire for assessing quality of life of patients with gastrointestinal neuroendocrine tumours. Br. J. Cancer 108, 301–310 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Strosberg, J. et al. Health-related quality of life in patients with progressive midgut neuroendocrine tumors treated with 177Lu-Dotatate in the phase III NETTER-1 trial. J. Clin. Oncol. 36, 2578–2584 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Strosberg, J. R. et al. Symptom diaries of patients with midgut neuroendocrine tumors treated with 177Lu-DOTATATE. J. Nucl. Med. 62, 1712–1718 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Pavel, M. E. et al. Health-related quality of life for everolimus versus placebo in patients with advanced, non-functional, well-differentiated gastrointestinal or lung neuroendocrine tumours (RADIANT-4): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 18, 1411–1422 (2017).

    Article  CAS  PubMed  Google Scholar 

  160. Ramage, J. K. et al. Observational study to assess quality of life in patients with pancreatic neuroendocrine tumors receiving treatment with everolimus: the OBLIQUE study (UK phase IV trial). Neuroendocrinology 108, 317–327 (2019).

    Article  CAS  PubMed  Google Scholar 

  161. Peipert, B. J., Goswami, S., Yount, S. E. & Sturgeon, C. Health-related quality of life in MEN1 patients compared with other chronic conditions and the United States general population. Surgery 163, 205–211 (2018).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Introduction (G.L., G.R. and D.C.); Epidemiology (F.P.); Mechanisms/pathophysiology (G.R.), Diagnosis, screening and prevention (G.L., M.P., D.O’T. and V.A.), Management (G.L., F.P., M.F., R.G.-C. and D.C.), Quality of life (R.P.R.), Outlook (G.L., G.R. and D.C.); overview of Primer (D.C. and G.R.). G.L. and F.P. contributed equally and are co-first authors; D.C. and G.R. contributed equally and are co-last authors.

Corresponding author

Correspondence to Davide Campana.

Ethics declarations

Competing interests

M.P. reports honoraria for presentations from Novartis, IPSEN, AAA, Boehringer Ingelheim, MSD, Recordati, Lilly and Sanofi; honoraria for advisory board or consultancy from AAA, IPSEN, Riemser and Hutchmed; fees to institution clinical trials from Novartis, ITM, AAA and IPSEN. V.A. reports honoraria for presentations from ESMIT, EANM/ESMO, AAA, Cineca and Elma Academy outside the submitted work. G.R. reports personal fees from AAA (invited speaker, speaker bureau), Bracco Imaging (consultancy) and being a reviewer for a grant application for GIMBE Foundation (Gruppo Italiano Medicina Fondata sull’Evidenza). D.C. reports honoraria for presentations from AAA, Ipsen, Novartis and Esteve. All other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Disease Primers thanks Mark Pritchard, Christos Toumpanakis, Helge Waldum and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lamberti, G., Panzuto, F., Pavel, M. et al. Gastric neuroendocrine neoplasms. Nat Rev Dis Primers 10, 25 (2024). https://doi.org/10.1038/s41572-024-00508-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-024-00508-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing