Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Stereoselectivity in Pd-catalysed cross-coupling reactions of enantioenriched nucleophiles

Abstract

Advances in Pd-catalysed cross-coupling reactions have facilitated the development of stereospecific variants enabling the use of configurationally stable, enantioenriched, main-group organometallic nucleophiles to form C(sp3)–C(sp2) bonds. Such stereospecific cross-coupling reactions constitute a powerful synthetic approach to attaining precise 3D control of molecular structure, allowing new stereogenic centres to be readily introduced into molecular architectures. Examples of stereospecific, Pd-catalysed cross-coupling reactions have been reported for isolable enantioenriched alkylboron, alkyltin, alkylgermanium and alkylsilicon nucleophiles. In these reactions, a single, dominant stereospecific pathway of transmetallation to palladium is required to effect efficient chirality transfer to the cross-coupled product. However, the potential for competing stereoretentive and stereoinvertive pathways of transmetallation complicates the stereochemical transfer in these processes and impedes the rational development of new stereospecific cross-coupling variants. In this Review, we describe the use of enantioenriched organometallic nucleophiles in stereospecific, Pd-catalysed cross-coupling reactions. We focus on systems involving well-defined, isolable, enantioenriched nucleophiles in which a clear stereochemical course of transmetallation is followed. Specific modes of electronic activation that influence the reactivity of alkylmetal nucleophiles are described and presented in the context of their impact on the stereochemical course of cross-coupling reactions. We expect that this Review will serve as a valuable resource to assist in deconvoluting the many considerations that potentially impact the stereochemical outcome of Pd-catalysed cross-coupling reactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Stereochemical considerations in the coupling of enantioenriched nucleophiles.
Fig. 2: Use of unactivated, stereodefined organoboron nucleophiles in Pd-catalysed cross-coupling reactions.
Fig. 3
Fig. 4: Propargylic and allylic organoboron nucleophiles in couplings.
Fig. 5: Suzuki couplings of activated alkylboron nucleophiles that occur with net inversion of stereochemistry.
Fig. 6: Examples of the coupling of enantioenriched organostannanes in copper-promoted palladium-catalysed Stille reactions.
Fig. 7: Copper-catalysed and copper-mediated cross-couplings of alkylstannanes.
Fig. 8: Pd-catalysed cross-coupling reactions of enantioenriched alkyltin, alkylgermanium and alkylsilicon nucleophiles.

Similar content being viewed by others

References

  1. de Meijere, A., Bräse, S. & Oestreich, M. (eds) Metal-Catalyzed Cross-Coupling Reactions and More (Wiley, 2014).

  2. Jana, R., Pathak, T. P. & Sigman, M. S. Advances in transition metal (Pd, Ni, Fe)-catalyzed cross-coupling reactions using alkyl-organometallics as reaction partners. Chem. Rev. 111, 1417–1492 (2011).

    CAS  Google Scholar 

  3. Cherney, A. H., Kadunce, N. T. & Reisman, S. E. Enantioselective and enantiospecific transition-metal-catalyzed cross-coupling reactions of organometallic reagents to construct C–C bonds. Chem. Rev. 115, 9587–9652 (2015).

    CAS  Google Scholar 

  4. Wang, C.-Y., Derosa, J. & Biscoe, M. R. The use of stable, optically active organometallic nucleophiles in cross-coupling reactions. Chem. Sci. 6, 5105–5113 (2015).

    CAS  Google Scholar 

  5. Rygus, J. P. G. & Crudden, C. M. Enantiospecific and iterative Suzuki–Miyaura cross-couplings. J. Am. Chem. Soc. 139, 18124–18137 (2017).

    CAS  Google Scholar 

  6. Leonori, D. & Aggarwal, V. K. Stereospecific couplings of secondary and tertiary boronic esters. Angew. Chem. Int. Ed. 54, 1082–1096 (2015).

    CAS  Google Scholar 

  7. Boudier, A., Bromm, L. O., Lotz, M. & Knochel, P. New applications of polyfunctional organometallic compounds in organic synthesis. Angew. Chem. Int. Ed. 39, 4414–4435 (2000).

    Google Scholar 

  8. Swift, E. C. & Jarvo, E. R. Asymmetric transition metal-catalyzed cross-coupling reactions for the construction of tertiary stereocenters. Tetrahedron 69, 5799–5817 (2013).

    CAS  Google Scholar 

  9. Pound, S. M. & Watson, M. P. Asymmetric synthesis via stereospecific C–N and C–O bond activation of alkyl amine and alcohol derivatives. Chem. Commun. 54, 12286–12301 (2018).

    CAS  Google Scholar 

  10. Sandford, C. & Aggarwal, V. K. Stereospecific functionalizations and transformations of secondary and tertiary boronic esters. Chem. Commun. 53, 5481–5494 (2017).

    CAS  Google Scholar 

  11. Namirembe, S. & Morken, J. P. Reactions of organoboron compounds enabled by catalyst-promoted metalate shifts. Chem. Soc. Rev. 48, 3464–3474 (2019).

    CAS  Google Scholar 

  12. Pratihar, S. & Roy, S. Reactivity and selectivity of organotin reagents in allylation and arylation: nucleophilicity parameter as a guide. Organometallics 30, 3257–3269 (2011).

    CAS  Google Scholar 

  13. Jover, J., Fey, N., Purdie, M., Lloyd-Jones, G. C. & Harvey, J. N. A computational study of phosphine ligand effects in Suzuki–Miyaura coupling. J. Mol. Catal. A Chem. 324, 39–47 (2010).

    CAS  Google Scholar 

  14. Hartwig, J. F. Electronic effects on reductive elimination to form carbon–carbon and carbon–heteroatom bonds from palladium(II) complexes. Inorg. Chem. 46, 1936–1947 (2007).

    CAS  Google Scholar 

  15. Ridgway, B. H. & Woerpel, K. A. Transmetallation of alkylboranes to palladium in the Suzuki coupling reaction proceeds with retention of stereochemistry. J. Org. Chem. 63, 458–460 (1998).

    CAS  Google Scholar 

  16. Matos, K. & Soderquist, J. A. Alkylboranes in the Suzuki–Miyaura coupling: stereochemical and mechanistic studies. J. Org. Chem. 63, 461–470 (1998).

    CAS  Google Scholar 

  17. Bock, P. L., Boschetto, D. M., Rasmussen, J. R., Demers, J. P. & Whitesides, G. M. The stereochemistry of reactions at carbon-transition metal σ-bonds. (CH3)3CCHDCHDFe(CO)2C5H5. J. Am. Chem. Soc. 96, 2814–2825 (1974).

    CAS  Google Scholar 

  18. Li, L., Zhao, S., Joshi-Pangu, A., Diane, M. & Biscoe, M. R. Stereospecific Pd-catalyzed cross-coupling reactions of secondary alkylboron nucleophiles and aryl chlorides. J. Am. Chem. Soc. 136, 14027–14030 (2014).

    CAS  Google Scholar 

  19. Biscoe, M. R., Fors, B. P. & Buchwald, S. L. A new class of easily activated palladium precatalysts for facile C–N cross-coupling reactions and the low temperature oxidative addition of aryl chlorides. J. Am. Chem. Soc. 130, 6686–6687 (2008).

    CAS  Google Scholar 

  20. Kinzel, T., Zhang, Y. & Buchwald, S. L. A new palladium precatalyst allows for the fast Suzuki–Miyaura coupling reactions of unstable polyfluorophenyl and 2-heteroaryl boronic acids. J. Am. Chem. Soc. 132, 14073–14075 (2010).

    CAS  Google Scholar 

  21. Bruno, N. C., Tudge, M. T. & Buchwald, S. L. Design and preparation of new palladium precatalysts for C–C and C–N cross-coupling reactions. Chem. Sci. 4, 916–920 (2013).

    CAS  Google Scholar 

  22. Butter, M. et al. Aryl trifluoroborates in Suzuki–Miyaura coupling: the roles of endogenous aryl boronic acid and fluoride. Angew. Chem. Int. Ed. 49, 5156–5160 (2010).

    Google Scholar 

  23. Zhao, S. et al. Enantiodivergent Pd-catalyzed C–C bond formation enabled through ligand parameterization. Science 362, 670–674 (2018).

    CAS  Google Scholar 

  24. Niemeyer, Z., Milo, A., Hickey, D. P. & Sigman, M. S. Parameterization of phosphine ligands reveals mechanistic pathways and predicts reaction outcomes. Nat. Chem. 8, 610–617 (2016).

    CAS  Google Scholar 

  25. Chen, L., Ren, P. & Carrow, B. P. Tri(1-adamantyl)phosphine: Expanding the boundary of electron-releasing character available to organo-phosphorus compounds. J. Am. Chem. Soc. 138, 6392–6395 (2016).

    CAS  Google Scholar 

  26. Lehman, J. W. et al. Axial shielding of Pd(II) complexes enables perfect stereoretention in Suzuki-Miyaura cross-coupling of Csp3 boronic acids. Nat. Commun. 10, 1263 (2019).

    Google Scholar 

  27. Imao, D., Glasspoole, B. W., Laberge, V. S. & Crudden, C. M. Cross coupling reactions of chiral secondary organoboronic esters with retention of configuration. J. Am. Chem. Soc. 131, 5024–5025 (2009).

    CAS  Google Scholar 

  28. Dreher, S. D., Dormer, P. G., Sandrock, D. L. & Molander, G. A. Efficient cross-coupling of secondary alkyltrifluoroborates with aryl chlorides – reaction discovery using parallel microscale experimentation. J. Am. Chem. Soc. 130, 9257–9259 (2008).

    CAS  Google Scholar 

  29. Rubin, M., Rubina, M. & Gevorgyan, V. Transition metal chemistry of cyclopropenes and cyclopropanes. Chem. Rev. 107, 3117–3179 (2007).

    CAS  Google Scholar 

  30. Zhou, S.-M., Deng, M.-Z., Xia, L.-J. & Tang, M.-H. Efficient Suzuki-type cross-coupling of enantiomerically pure cyclopropylboronic acids. Angew. Chem. Int. Ed. 37, 2845–2847 (1998).

    CAS  Google Scholar 

  31. Luithle, J. E. A. & Pietruszka, J. Synthesis of enantiomerically pure cyclopropanes from cyclopropylboronic acids. J. Org. Chem. 64, 8287–8297 (1999).

    CAS  Google Scholar 

  32. Rubina, M., Rubin, M. & Gevorgyan, V. Catalytic enantioselective hydroboration of cyclopropenes. J. Am. Chem. Soc. 125, 7198–7199 (2003).

    CAS  Google Scholar 

  33. Lohr, S. & de Meijere, A. 2-(Bicyclopropylidenyl)- and 2-(trans-2′-cyclopropylcyclopropyl)-4,4,5,5-tetramethyl-1,3-dioxa-2-borolane and their palladium-catalyzed cross-coupling reactions. Synlett 2001, 489–492 (2001).

    Google Scholar 

  34. Fang, G.-H., Yan, Z.-J. & Deng, M.-Z. Palladium-catalyzed cross-coupling of stereospecific potassium cyclopropyl trifluoroborates with aryl bromides. Org. Lett. 6, 357–360 (2004).

    CAS  Google Scholar 

  35. Chen, H. & Deng, M.-Z. A novel stereocontrolled synthesis of 1,2-trans cyclopropyl ketones via Suzuki-type coupling of acid chlorides with cyclopropylboronic acids. Org. Lett. 2, 1649–1651 (2000).

    CAS  Google Scholar 

  36. Glasspoole, B. W., Oderinde, M. S., Moore, B. D., Antoft-Finch, A. & Crudden, C. M. Highly chemoselective and enantiospecific Suzuki–Miyaura cross-couplings of benzylic organoboronic esters. Synthesis 45, 1759–1763 (2013).

    CAS  Google Scholar 

  37. Matthew, S. C., Glasspoole, B. W., Eisenberger, P. & Crudden, C. M. Synthesis of enantiomerically enriched triarylmethanes by enantiospecific Suzuki–Miyaura cross-coupling reactions. J. Am. Chem. Soc. 136, 5828–5831 (2014).

    CAS  Google Scholar 

  38. Awano, T., Ohmura, T. & Suginome, M. Inversion or retention? Effects of acidic additives on the stereochemical course in enantiospecific Suzuki–Miyaura coupling of α-(acetylamino)benzylboronic esters. J. Am. Chem. Soc. 133, 20738–20741 (2011).

    CAS  Google Scholar 

  39. Molander, G. A. & Wisniewski, S. R. Stereospecific cross-coupling of secondary organotrifluoroborates: potassium 1-(benzyloxy)alkyltrifluoroborates. J. Am. Chem. Soc. 134, 16856–16868 (2012).

    CAS  Google Scholar 

  40. Feng, X., Jeon, H. & Yun, J. Regio- and enantioselective copper(I)-catalyzed hydroboration of borylalkenes: asymmetric synthesis of 1,1-diborylalkanes. Angew. Chem. Int. Ed. 52, 3989–3992 (2013).

    CAS  Google Scholar 

  41. Krizkova, P. M. & Hammerschmidt, F. On the configurational stability of chiral heteroatom-substituted [D1]methylpalladium complexes as intermediates of Stille and Suzuki–Miyaura cross-coupling reactions. Eur. J. Org. Chem. 2013, 5143–5148 (2013).

    Google Scholar 

  42. Hoang, G. L. et al. Enantioselective desymmetrization via carbonyl-directed catalytic asymmetric hydroboration and Suzuki–Miyaura cross-coupling. Org. Lett. 17, 940–943 (2015).

    CAS  Google Scholar 

  43. Hoang, G. L. & Takacs, J. M. Enantioselective γ-borylation of unsaturated amides and stereoretentive Suzuki–Miyaura cross-coupling. Chem. Sci. 8, 4511–4516 (2017).

    CAS  Google Scholar 

  44. Daini, M. & Suginome, M. Palladium-catalyzed, stereoselective, cyclizative alkenylboration of carbon–carbon double bonds through activation of a boron–chlorine bond. J. Am. Chem. Soc. 133, 4758–4761 (2011).

    CAS  Google Scholar 

  45. Blaisdell, T. P. & Morken, J. P. Hydroxyl-directed cross-coupling: a scalable synthesis of debromohamigeran E and other targets of interest. J. Am. Chem. Soc. 137, 8712–8715 (2015).

    CAS  Google Scholar 

  46. Farmer, J. L., Hunter, H. N. & Organ, M. G. Regioselective cross-coupling of allylboronic acid pinacol ester derivatives with aryl halides via Pd-PEPPSI-IPent. J. Am. Chem. Soc. 134, 17470–17473 (2012).

    CAS  Google Scholar 

  47. Yang, Y. & Buchwald, S. L. Ligand-controlled palladium-catalyzed regiodivergent Suzuki–Miyaura cross-coupling of allylboronates and aryl halides. J. Am. Chem. Soc. 135, 10642–10645 (2013).

    CAS  Google Scholar 

  48. Partridge, B. M., Chausset-Boissarie, L., Burns, M., Pulis, A. P. & Aggarwal, V. K. Enantioselective synthesis and cross-coupling of tertiary propargylic boronic esters using lithiation–borylation of propargylic carbamates. Angew. Chem. Int. Ed. 51, 11795–11799 (2012).

    CAS  Google Scholar 

  49. Chausset-Boissarie, L. et al. Enantiospecific, regioselective cross-coupling reactions of secondary allylic boronic esters. Chem. Eur. J. 19, 17698–17701 (2013).

    CAS  Google Scholar 

  50. Potter, B., Edelstein, E. K. & Morken, J. P. Modular, catalytic enantioselective construction of quaternary carbon stereocenters by sequential cross-coupling reactions. Org. Lett. 18, 3286–3289 (2016).

    CAS  Google Scholar 

  51. Ding, J., Rybak, T. & Hall, D. G. Synthesis of chiral heterocycles by ligand-controlled regiodivergent and enantiospecific Suzuki Miyaura cross-coupling. Nat. Commun. 5, 5474 (2014).

    Google Scholar 

  52. Huang, X. et al. Expanding Pd-catalyzed C–N bond-forming processes: The first amidation of aryl sulfonates, aqueous amination, and complementarity with Cu-catalyzed reactions. J. Am. Chem. Soc. 125, 6653–6655 (2003).

    CAS  Google Scholar 

  53. Rybak, T. & Hall, D. G. Stereoselective and regiodivergent allylic Suzuki–Miyaura cross-coupling of 2-ethoxydihydropyranyl boronates: synthesis and confirmation of absolute stereochemistry of diospongin B. Org. Lett. 17, 4156–4159 (2015).

    CAS  Google Scholar 

  54. Rubial, B. et al. Enantiospecific synthesis of ortho-substituted 1,1-diarylalkanes by a 1,2-metalate rearrangement/anti-SN2′ elimination/rearomatizing allylic Suzuki–Miyaura reaction sequence. Angew. Chem. Int. Ed. 58, 1366–1370 (2019).

    CAS  Google Scholar 

  55. Ardolino, M. J. & Morken, J. P. Congested C–C bonds by Pd-catalyzed enantioselective allyl–allyl cross-coupling, a mechanism-guided solution. J. Am. Chem. Soc. 136, 7092–7100 (2014).

    CAS  Google Scholar 

  56. Ohmura, T., Awano, T. & Suginome, M. Stereospecific Suzuki–Miyaura coupling of chiral α-(acylamino)benzylboronic esters with inversion of configuration. J. Am. Chem. Soc. 132, 13191–13193 (2010).

    CAS  Google Scholar 

  57. Sandrock, D. L., Jean-Gerard, L., Chen, C.-Y., Dreher, S. D. & Molander, G. A. Stereospecific cross-coupling of secondary alkyl β-trifluoroboratoamides. J. Am. Chem. Soc. 132, 17108–17110 (2010).

    CAS  Google Scholar 

  58. Ohmura, T., Miwa, K., Awano, T. & Suginome, M. Enantiospecific Suzuki–Miyaura coupling of nonbenzylic α-(acylamino)alkylboronic acid derivatives. Chem. Asian J. 13, 2414–2417 (2018).

    CAS  Google Scholar 

  59. Lee, J. C. H., McDonald, R. & Hall, D. G. Enantioselective preparation and chemoselective cross-coupling of 1,1-diboron compounds. Nat. Chem. 3, 894–899 (2011).

    CAS  Google Scholar 

  60. Endo, K., Ohkubo, T., Hirokami, M. & Shibata, T. Chemoselective and regiospecific Suzuki coupling on a multisubstituted sp3-carbon in 1,1-diborylalkanes at room temperature. J. Am. Chem. Soc. 132, 11033–11035 (2010).

    CAS  Google Scholar 

  61. Sun, C., Potter, B. & Morken, J. P. A catalytic enantiotopic-group-selective Suzuki reaction for the construction of chiral organoboronates. J. Am. Chem. Soc. 136, 6534–6537 (2014).

    CAS  Google Scholar 

  62. Potter, B., Szymaniak, A. A., Edelstein, E. K. & Morken, J. P. Nonracemic allylic boronates through enantiotopic-group-selective cross-coupling of geminal bis(boronates) and vinyl halides. J. Am. Chem. Soc. 136, 17918–17921 (2014).

    CAS  Google Scholar 

  63. Lou, Y. et al. Copper-catalyzed enantioselective 1,6-boration of para-quinone methides and efficient transformation of gem-diarylmethine boronates to triarylmethanes. Angew. Chem. Int. Ed. 54, 12134–12138 (2015).

    CAS  Google Scholar 

  64. Labadie, J. W. & Stille, J. K. Mechanisms of the palladium-catalyzed couplings of acid chlorides with organotin reagents. J. Am. Chem. Soc. 105, 6129–6137 (1983).

    CAS  Google Scholar 

  65. Vedejs, E., Haight, A. R. & Moss, W. O. Internal coordination at tin promotes selective alkyl transfer in the Stille coupling reaction. J. Am. Chem. Soc. 114, 6556–6558 (1992).

    CAS  Google Scholar 

  66. Jurkschat, K., Tzschach, A. & Meunier-Piret, J. Crystal and molecular structure of 1-aza-5-stanna-5-methyltricyclo[3.3.3.01,5]undecane. Evidence for a transannular donor–acceptor interaction in a tetraorganotin compound. J. Organomet. Chem. 315, 45–49 (1986).

    CAS  Google Scholar 

  67. Li, L., Wang, C.-Y., Huang, R. & Biscoe, M. R. Stereoretentive Pd-catalyzed Stille cross-coupling reactions of secondary alkyl azastannatranes and aryl electrophiles. Nat. Chem. 5, 607–612 (2013).

    CAS  Google Scholar 

  68. Wang, C.-Y., Ralph, G., Derosa, J. & Biscoe, M. R. Stereospecific palladium-catalyzed acylation of enantioenriched alkylcarbastannatranes: a general alternative to asymmetric enolate reactions. Angew. Chem. Int. Ed. 56, 856–860 (2017).

    CAS  Google Scholar 

  69. Theddu, N. & Vedejs, E. Stille coupling of an aziridinyl stannatrane. J. Org. Chem. 78, 5061–5066 (2013).

    CAS  Google Scholar 

  70. Ma, X. et al. A general approach to stereospecific cross-coupling reactions of nitrogen-containing stereocenters. Chem 6, 781–791 (2020).

    CAS  Google Scholar 

  71. Ye, J., Bhatt, R. K. & Falck, J. R. Stereospecific palladium/copper cocatalyzed cross-coupling of α-alkoxy- and α-aminostannanes with acyl chlorides. J. Am. Chem. Soc. 116, 1–5 (1994).

    CAS  Google Scholar 

  72. Zhu, F., Rouke, M. J., Yang, T., Rodriguez, J. & Walczak, M. A. Highly stereospecific cross-coupling reactions of anomeric stannanes for the synthesis of C-aryl glycosides. J. Am. Chem. Soc. 138, 12049–12052 (2016).

    CAS  Google Scholar 

  73. Jia, T., Cao, P., Wang, D., Lou, Y. & Liao, J. Copper-catalyzed asymmetric three-component borylstannation: enantioselective formation of C–Sn bond. Chem. Eur. J. 21, 4918–4922 (2015).

    CAS  Google Scholar 

  74. Falck, J. R., Bhatt, R. K. & Ye, J. Tin–copper transmetalation: Cross-coupling of α-heteroatom-substituted alkyltributylstannanes with organohalides. J. Am. Chem. Soc. 117, 5973–5982 (1995).

    CAS  Google Scholar 

  75. Mohapatra, S., Bandyopadhyay, A., Barma, D. K., Capdevila, J. H. & Falck, J. R. Chiral α,β-dialkoxy- and α-alkoxy-β-aminostannanes: preparation and copper-mediated cross-coupling. Org. Lett. 5, 4759–4762 (2003).

    CAS  Google Scholar 

  76. Falck, J. R., Patel, P. K. & Bandyopadhyay, A. Stereospecific cross-coupling of α-(thiocarbamoyl)organostannanes with alkenyl, aryl, and heteroaryl iodides. J. Am. Chem. Soc. 129, 790–793 (2007).

    CAS  Google Scholar 

  77. Dakarapu, R. & Falck, J. R. Stereospecific Stille cross-couplings using Mn(II)Cl2. J. Org. Chem. 83, 1241–1251 (2018).

    CAS  Google Scholar 

  78. Li, H., He, A., Falck, J. R. & Liebeskind, L. S. Stereocontrolled synthesis of α-amino-α′-alkoxy ketones by a copper-catalyzed cross-coupling of peptidic thiol esters and α-alkoxyalkylstannanes. Org. Lett. 13, 3682–3685 (2011).

    CAS  Google Scholar 

  79. Lange, H., Frohlich, R. & Hoppe, D. Cu(I)-catalyzed stereospecific coupling reactions of enantioenriched α-stannylated benzyl carbamates and their application. Tetrahedron 64, 9123–9135 (2008).

    CAS  Google Scholar 

  80. Logan, K. M., Smith, K. B. & Brown, M. K. Copper/palladium synergistic catalysis for the syn- and anti-selective carboboration of alkenes. Angew. Chem. Int. Ed. 54, 5228–5231 (2015).

    CAS  Google Scholar 

  81. Kells, K. W. & Chong, J. M. Stille coupling of stereochemically defined α-sulfonamidoorganostannanes. J. Am. Chem. Soc. 126, 15666–15667 (2004).

    CAS  Google Scholar 

  82. Kalkofen, R. & Hoppe, D. First example of an enantiospecific sp3-sp2 Stille coupling of a chiral allylstannane with aryl halides. Synlett 2006, 1959–1961 (2006).

    Google Scholar 

  83. Goli, M., He, A. & Falck, J. R. Pd-catalyzed cross-coupling of α-(acyloxy)-tri-n-butylstannanes with alkenyl, aryl, and heteroaryl electrophiles. Org. Lett. 13, 344–346 (2011).

    CAS  Google Scholar 

  84. Hodgson, D. M. et al. Intramolecular cyclopropanation of unsaturated terminal epoxides and chlorohydrins. J. Am. Chem. Soc. 129, 4456–4462 (2007).

    CAS  Google Scholar 

  85. Xu, M.-Y. et al. Alkyl carbagermatranes enable practical palladium-catalyzed sp2–sp3 cross-coupling. J. Am. Chem. Soc. 141, 7582–7588 (2019).

    CAS  Google Scholar 

  86. Ma, X., Diane, M., Ralph, G., Chen, C. & Biscoe, M. R. Stereospecific electrophilic fluorination of alkylcarbastannatrane reagents. Angew. Chem. Int. Ed. 56, 12663–12667 (2017).

    CAS  Google Scholar 

  87. Hatanaka, Y. & Hiyama, T. Stereochemistry of the cross-coupling reaction of chiral alkylsilanes with aryl triflates: a novel approach to optically active compounds. J. Am. Chem. Soc. 112, 7793–7794 (1990).

    CAS  Google Scholar 

  88. Hatanaka, Y., Goda, K. & Hiyama, T. Regio- and stereoselective cross-coupling reaction of optically active allylsilanes: stereocontrol of palladium-mediated SE′ reactions. Tetrahedron Lett. 35, 1279–1282 (1994).

    CAS  Google Scholar 

  89. Hiyama, T. et al. Chirality transfer via the palladium-catalyzed cross-coupling reaction of optically active 2-cyclohexenylsilane: stereochemical and mechanistic aspects. Organometallics 15, 5762–5765 (1996).

    CAS  Google Scholar 

  90. Denmark, S. E. & Werner, N. S. On the stereochemical course of palladium-catalyzed cross-coupling of allylic silanolate salts with aromatic bromides. J. Am. Chem. Soc. 132, 3612–3620 (2010).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the City College of New York, the National Institutes of Health (R01GM131079) and the National Science Foundation (CHE-1665189) for support of this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the Review. Additionally, all authors contributed to the writing and editing of the Review.

Corresponding author

Correspondence to Mark R. Biscoe.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Murray, B. & Biscoe, M.R. Stereoselectivity in Pd-catalysed cross-coupling reactions of enantioenriched nucleophiles. Nat Rev Chem 4, 584–599 (2020). https://doi.org/10.1038/s41570-020-00222-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-020-00222-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing