Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Large tunable photoeffect on ion conduction in halide perovskites and implications for photodecomposition

Subjects

Abstract

In the same way as electron transport is crucial for information technology, ion transport is a key phenomenon in the context of energy research. To be able to tune ion conduction by light would open up opportunities for a wide realm of new applications, but it has been challenging to provide clear evidence for such an effect. Here we show through various techniques, such as transference-number measurements, permeation studies, stoichiometric variations, Hall effect experiments and the use of blocking electrodes, that light excitation enhances by several orders of magnitude the ionic conductivity of methylammonium lead iodide, the archetypal metal halide photovoltaic material. We provide a rationale for this unexpected phenomenon and show that it straightforwardly leads to a hitherto unconsidered photodecomposition path of the perovskite.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of the direct experimental methods used to study ionic conduction in the dark and under light.
Fig. 2: Electronic and ionic conductivities of MAPbI3 thin films as a function of light intensity.
Fig. 3: Absorbance of iodine extracted from MAPI thin films immersed in toluene.
Fig. 4: Schematic of the photodecomposition path.

Similar content being viewed by others

References

  1. Merkle, R., de Souza, R. A. & Maier, J. Optically tuning the rate of stoichiometry changes: surface-controlled oxygen incorporation into oxides under UV irradiation. Angew. Chem. Int. Ed. 40, 2126–2129 (2001).

    CAS  Google Scholar 

  2. Walch, G. et al. A solid oxide photoelectrochemical cell with UV light-driven oxygen storage in mixed conducting electrodes. J. Mater. Chem. A 5, 1637–1649 (2017).

    CAS  Google Scholar 

  3. Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005).

    CAS  Google Scholar 

  4. Brenner, T. M., Egger, D. A., Kronik, L., Hodes, G. & Cahen, D. Hybrid organic–inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties. Nat. Rev. Mater. 1, 15007 (2016).

    CAS  Google Scholar 

  5. Dequilettes, D. W. et al. Photo-induced halide redistribution in organic–inorganic perovskite films. Nat. Commun. 7, 11683 (2016).

    CAS  Google Scholar 

  6. Eames, C. et al. Ionic transport in hybrid lead iodide perovskite solar cells. Nat. Commun. 6, 7497 (2015).

    CAS  Google Scholar 

  7. Hoke, E. T. et al. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem. Sci. 6, 613–617 (2015).

    CAS  Google Scholar 

  8. Ummadisingu, A. et al. The effect of illumination on the formation of metal halide perovskite films. Nature 545, 208–212 (2017).

    CAS  Google Scholar 

  9. Leijtens, T. et al. Mapping electric field-induced switchable poling and structural degradation in hybrid lead halide perovskite thin films. Adv. Energy Mater. 5, 1500962 (2015).

    Google Scholar 

  10. Meloni, S. et al. Ionic polarization-induced current–voltage hysteresis in CH3NH3PbX3 perovskite solar cells. Nat. Commun. 7, 10334 (2016).

    CAS  Google Scholar 

  11. Yuan, Y. & Huang, J. Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability. Acc. Chem. Res. 49, 286–293 (2016).

    CAS  Google Scholar 

  12. Green, M. A., Ho-Baillie, A. & Snaith, H. J. The emergence of perovskite solar cells. Nat. Photon. 8, 506–514 (2014).

    CAS  Google Scholar 

  13. Jung, H. S. & Park, N.-G. Perovskite solar cells: from materials to devices. Small 11, 10–25 (2015).

    CAS  Google Scholar 

  14. Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

    CAS  Google Scholar 

  15. Yang, W. S. et al. Iodide management in formamidinium–lead–halide-based perovskite layers for efficient solar cells. Science 356, 1376–1379 (2017).

    CAS  Google Scholar 

  16. Yang, T. Y., Gregori, G., Pellet, N., Gratzel, M. & Maier, J. The significance of ion conduction in a hybrid organic–inorganic lead-iodide-based perovskite photosensitizer. Angew. Chem. Int. Ed. 54, 7905–7910 (2015).

    CAS  Google Scholar 

  17. Senocrate, A. et al. The nature of ion conduction in methylammonium lead iodide: a multimethod approach. Angew. Chem. Int. Ed. 56, 7755–7759 (2017).

    CAS  Google Scholar 

  18. Xing, J. et al. Ultrafast ion migration in hybrid perovskite polycrystalline thin films under light and suppression in single crystals. Phys. Chem. Chem. Phys. 18, 30484–30490 (2016).

    CAS  Google Scholar 

  19. Zhao, Y.-C. et al. Quantification of light-enhanced ionic transport in lead iodide perovskite thin films and its solar cell applications. Light Sci. Appl. 6, e16243 (2017).

    CAS  Google Scholar 

  20. Sabeth, F., Iimori, T. & Ohta, N. Gigantic photoresponse and reversible photoswitching in ionic conductivity of polycrystalline β-AgI. J. Phys. Chem. C 116, 9209–9213 (2012).

    CAS  Google Scholar 

  21. Mosconi, E., Meggiolaro, D., Snaith, H. J., Stranks, S. D. & de Angelis, F. Light-induced annihilation of Frenkel defects in organo–lead halide perovskites. Energy Environ. Sci. 9, 3180–3187 (2016).

    CAS  Google Scholar 

  22. Maier, J. Physical Chemistry of Ionic Materials: Ions and Electrons in Solids (Wiley, Chichester, 2004).

    Google Scholar 

  23. Maier, J. in Modern Aspects of Electrochemistry No. 41 (eds C. Vayenas, R. E. White & M. E. Gamboa-Aldeco) 1–138 (Springer, New York, NY, 2007).

  24. Zohar, A. et al. What Is the mechanism of MAPbI3 p-doping by I2? Insights from optoelectronic properties. ACS Energy Lett. 2, 2408–2414 (2017).

    CAS  Google Scholar 

  25. Wagner, C. Galvanic cells with solid electrolytes involving ionic and electronic conduction. In Int. Committee of Electrochemical Thermodynamics and Kinetics, Proc. of the Seventh Meeting at Lindau 1955 361–377 (Butterworth Scientific, London 1957).

  26. Rickert, H. Electrochemistry of Solids (Springer, Berlin, Heidelberg, 1982).

  27. Wang, S., Jiang, Y., Juarez-Perez, E. J., Ono, L. K. & Qi, Y. Accelerated degradation of methylammonium lead iodide perovskites induced by exposure to iodine vapour. Nat. Energy 2, 16195 (2016).

    Google Scholar 

  28. Mazumdar, N., Chikindas, M. L. & Uhrich, K. Slow release polymer–iodine tablets for disinfection of untreated surface water. J. Appl. Polym. Sci. 117, 329–334 (2010).

    CAS  Google Scholar 

  29. Walsh, A., Scanlon, D. O., Chen, S., Gong, X. G. & Wei, S.-H. Self-regulation mechanism for charged point defects in hybrid halide perovskites. Angew. Chem. Int. Ed. 54, 1791–1794 (2015).

    CAS  Google Scholar 

  30. Tang, X. F. et al. Photoinduced degradation of methylammonium lead triiodide perovskite semiconductors. J. Mater. Chem. A 4, 15896–15903 (2016).

    CAS  Google Scholar 

  31. Meloni, S., Palermo, G., Ashari-Astani, N., Gratzel, M. & Rothlisberger, U. Valence and conduction band tuning in halide perovskites for solar cell applications. J. Mater. Chem. A 4, 15997–16002 (2016).

    CAS  Google Scholar 

  32. Yin, W. J., Shi, T. T. & Yan, Y. F. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104, 063903 (2014).

    Google Scholar 

  33. Popov, A. I., Kotomin, E. A. & Maier, J. Analysis of self-trapped hole mobility in alkali halides and metal halides. Solid State Ionics 302, 3–6 (2017).

    CAS  Google Scholar 

  34. Loftager, S., García-Fernández, P., Aramburu, J. A., Moreno, M. & Garcia-Lastra, J. M. Stability and polaronic motion of self-trapped holes in silver halides: insight through DFT+ U calculations. J. Phys. Chem. C 120, 8509–8524 (2016).

    CAS  Google Scholar 

  35. Brudevoll, T., Kotomin, E. A. & Christensen, N. E. Interstitial-oxygen–atom diffusion in MgO. Phys. Rev. B 53, 7731–7735 (1996).

    CAS  Google Scholar 

  36. Murray, R. B. & Keller, F. J. Vk Centers and recombination luminescence in rubidium iodide and sodium iodide. Phys. Rev. 153, 993–999 (1967).

    CAS  Google Scholar 

  37. Wilson, D. J., Sokol, A. A., French, S. A. & Catlow, C. R. A. Defect structures in the silver halides. Phys. Rev. B 77, 064115 (2008).

    Google Scholar 

  38. Du, M. H. Efficient carrier transport in halide perovskites: theoretical perspectives. J. Mater. Chem. A 2, 9091–9098 (2014).

    CAS  Google Scholar 

  39. Whalley, L. D., Crespo-Otero, R. & Walsh, A. H-center and V-center defects in hybrid halide perovskites. ACS Energy Lett. 2, 2713–2714 (2017).

    CAS  Google Scholar 

  40. Li, W., Liu, J., Bai, F.-Q., Zhang, H.-X. & Prezhdo, O. V. Hole trapping by iodine interstitial defects decreases free carrier losses in perovskite solar cells: a time-domain ab initio study. ACS Energy Lett. 2, 1270–1278 (2017).

    CAS  Google Scholar 

  41. Maier, J. Mass transport in the presence of internal defect reactions—concept of conservative ensembles: I, chemical diffusion in pure compounds. J. Am. Ceram. Soc. 76, 1212–1217 (1993).

    CAS  Google Scholar 

  42. Im, J.-H., Lee, C.-R., Lee, J.-W., Park, S.-W. & Park, N.-G. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3, 4088–4093 (2011).

    CAS  Google Scholar 

  43. Jeon, N. J. et al. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 13, 897 (2014).

    CAS  Google Scholar 

  44. Gillespie, L. J. & Fraser, L. H. D. The normal vapor pressure of crystalline iodine. J. Am. Chem. Soc. 58, 2260–2263 (1936).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to H. Hoier and G. Maier for XRD measurements, J. Na for his help with the Hall-effect experiments and A. Güth (Nanostructuring Lab in the Max Planck Institute for Solid State Research) for his help with electrode deposition. They are indebted to K. Müller from the Scientific Facility for Interface Analysis (headed by U. Starke) for XPS measurements. The authors also thank E. Kotomin, R. Evarestov, J. Fleig and, in particular, R. Merkle for many helpful discussions. This work was performed within the framework of the Max Planck-EPFL Center for Molecular Nano-science and Technology.

Author information

Authors and Affiliations

Authors

Contributions

G.Y.K. was responsible for the sample preparation and characterization. G.Y.K., A.S., T.-Y.Y., G.G. and J.M. designed the experiments. J.M. supervised the work. G.Y.K., A.S., M.G. and J.M. discussed the results and wrote the manuscript.

Corresponding author

Correspondence to Joachim Maier.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary text (9 sections), Figures S1–S10, 17 references

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, G.Y., Senocrate, A., Yang, TY. et al. Large tunable photoeffect on ion conduction in halide perovskites and implications for photodecomposition. Nature Mater 17, 445–449 (2018). https://doi.org/10.1038/s41563-018-0038-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-018-0038-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing