Article

Primate brain size is predicted by diet but not sociality

  • Nature Ecology & Evolution 1, Article number: 0112 (2017)
  • doi:10.1038/s41559-017-0112
  • Download Citation
Received:
Accepted:
Published online:

Abstract

The social brain hypothesis posits that social complexity is the primary driver of primate cognitive complexity, and that social pressures ultimately led to the evolution of the large human brain. Although this idea has been supported by studies indicating positive relationships between relative brain and/or neocortex size and group size, reported effects of different social and mating systems are highly conflicting. Here, we use a much larger sample of primates, more recent phylogenies, and updated statistical techniques, to show that brain size is predicted by diet, rather than multiple measures of sociality, after controlling for body size and phylogeny. Specifically, frugivores exhibit larger brains than folivores. Our results call into question the current emphasis on social rather than ecological explanations for the evolution of large brains in primates and evoke a range of ecological and developmental hypotheses centred on frugivory, including spatial information storage, extractive foraging and overcoming metabolic constraints.

  • Subscribe to Nature Ecology & Evolution for full access:

    $99

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

References

  1. 1.

    & A critique of comparative studies of brain size. Proc. R. Soc. B 274, 453–464 (2007).

  2. 2.

    Neocortex size and behavioural ecology in primates. Proc. R. Soc. Lond. B 263, 173–177 (1996).

  3. 3.

    & Primates, brains and ecology. J. Zool. 190, 309–323 (1980).

  4. 4.

    & Comparing brains. Science 249, 140–146 (1990).

  5. 5.

    in Primate Ontogeny, Cognition and Social Behaviour (eds Lee, P. C. & Lee, J. G.) 93–104 (Cambridge Univ. Press, 1986).

  6. 6.

    & Human adaptation to the control of fire. Evol. Anthropol. 19, 187–199 (2010).

  7. 7.

    & Impact of meat and Lower Palaeolithic food processing techniques on chewing in humans. Nature 531, 500–503 (2016).

  8. 8.

    Human brain evolution in an ecological context. Fifty-Second James Arthur Lecture on “The Evolution of the Human Brain,” (American Museum of Natural History 1983).

  9. 9.

    Relative brain size in monkeys and prosimians. Am. J. Phys. Anthropol. 66, 263–273 (1985).

  10. 10.

    et al. Metabolic acceleration and the evolution of human brain size and life history. Nature 533, 390–392 (2016).

  11. 11.

    & The expensive brain: a framework for explaining evolutionary changes in brain size. J. Hum. Evol. 57, 392–400 (2009).

  12. 12.

    in Growing Points in Ethology (eds Bateson, P. P. G. & Hinde, R. A.) 303–317 (Cambridge Univ. Press, 1976).

  13. 13.

    Lemur social behavior and primate intelligence. Science 153, 501–506 (1966).

  14. 14.

    Neocortex size as a constraint on group size in primates. J. Hum. Evol. 22, 469–493 (1992).

  15. 15.

    The social brain hypothesis. Evol. Anthropol. 6, 178–190 (1998).

  16. 16.

    et al. Assessing sources of error in comparative analyses of primate behavior: intraspecific variation in group size and the social brain hypothesis. J. Hum. Evol. 94, 126–133 (2016).

  17. 17.

    & The evolution of the social brain: anthropoid primates contrast with other vertebrates. Proc. R. Soc. B 274, 2429–2436 (2007).

  18. 18.

    Sexual selection and the evolution of brain size in primates. PLoS ONE 1, e62 (2006).

  19. 19.

    The seven deadly sins of comparative analysis. J. Evol. Biol. 22, 1367–1375 (2009).

  20. 20.

    A composite estimate of primate phylogeny. Phil. Trans. R. Soc. Lond. B 348, 405–421 (1995).

  21. 21.

    & Mosaic evolution of brain structure in mammals. Nature 405, 1055–1058 (2000).

  22. 22.

    , & Evidence for coevolution of sociality and relative brain size in three orders of mammals. Evolution 61, 2811–2821 (2007).

  23. 23.

    Embodied cognitive evolution and the cerebellum. Phil. Trans. R. Soc. B 367, 2097–2107 (2012).

  24. 24.

    & Species differences in executive function correlate with hippocampus volume and neocortex ratio across nonhuman primates. J. Comp. Psychol. 124, 252–260 (2010).

  25. 25.

    & Social intelligence, innovation, and enhanced brain size in primates. Proc. Natl Acad. Sci. USA 99, 4436–4441 (2011).

  26. 26.

    , , & , Overall brain size, and not encephalization quotient, best predicts cognitive ability across non-human primates. Brain Behav. Evol. 70, 115–124 (2007).

  27. 27.

    , & The 10kTrees website: a new online resource for primate phylogeny. Evol. Anthropol. 19, 114–118 (2010).

  28. 28.

    et al. A molecular phylogeny of living primates. PLoS Genet. 7, e1001342 (2011).

  29. 29.

    Bayesian model selection in social research. Sociol. Methodol. 25, 111–164 (1995).

  30. 30.

    & Gorilla and orangutan brains conform to the primate cellular scaling rules: implications for human evolution. Brain Behav. Evol. 77, 33–44 (2011).

  31. 31.

    Evolution of the Brain and Intelligence (Academic, 1973).

  32. 32.

    , , & Reconstructing the ups and downs of primate brain evolution: implications for adaptive hypotheses and Homo floresiensis. BMC Biol. 8, 9 (2010).

  33. 33.

    Vertebrate predation in Cebus capucinus: meat eating in a neotropical monkey. Folia Primatol. 54, 196–205 (1990).

  34. 34.

    , & Energetics and the evolution of human brain size. Nature 480, 91–93 (2011).

  35. 35.

    , , & Sociality, ecology, and relative brain size in lemurs. J. Hum. Evol. 56, 471–478 (2009).

  36. 36.

    An examination of cetacean brain structure with a novel hypothesis correlating thermogenesis to the evolution of a big brain. Biol. Rev. 81, 293–338 (2006).

  37. 37.

    Carnivore brain size, behavioral ecology, and phylogeny. J. Mammal. 67, 23–36 (1986).

  38. 38.

    & Is there a relationship between forebrain size and group size in birds? Evol. Ecol. Res. 6, 833–842 (2004).

  39. 39.

    , & The spotted hyena (Crocuta crocuta) as a model system for study of the evolution of intelligence. J. Mammal. 88, 545–554 (2007).

  40. 40.

    , & Social brains, simple minds: does social complexity really require cognitive complexity? Phil. Trans. R. Soc. B 362, 561–575 (2007).

  41. 41.

    , , & in Animal Thinking: Contemporary Issues in Comparative Cognition (eds Menzel, R. & Fischer, J.) 209–221 (MIT Press, 2011).

  42. 42.

    , , & Brain size predicts the success of mammal species introduced into novel environments. Am. Nat. 172, S63–S71 (2008).

  43. 43.

    & Understanding primate brain evolution. Phil. Trans. R. Soc. B 362, 649–658 (2007).

  44. 44.

    & Measuring social complexity. Anim. Behav. 103, 203–209 (2015).

  45. 45.

    & Rapid evolution of the cerebellum in humans and other great apes. Curr. Biol. 24, 2440–2444 (2014).

  46. 46.

    & Stone tools, language and the brain in human evolution. Phil. Trans. R. Soc. B 367, 75–87 (2012).

  47. 47.

    , & Neuroanatomical correlates of handedness for tool use in chimpanzees (Pan troglodytes). Implication for theories on the evolution of language. Psychol. Sci. 18, 971–977 (2007).

  48. 48.

    et al. Comparative analysis of encephalization in mammals reveals relaxed constraints on anthropoid primate and cetacean brain scaling. J. Evol. Biol. 25, 981–994 (2012a).

  49. 49.

    et al. Endocranial volumes of primate species: scaling analyses using a comprehensive and reliable data set. J. Hum. Evol. 55, 967–978 (2008).

  50. 50.

    , & New and revised data on volumes of brain structures in insectivores and primates. Folia Primatol. 35, 1–29 (1981).

  51. 51.

    , & in Primate Societies (eds Smuts, B. B., Cheney, D. L., Seyfarth, R. M., Wragham, R. W. & Struhsaker, T. T.) 181–196 (Univ. Chicago Press, 1987).

  52. 52.

    & CRC Handbook of Mammalian Body Masses (CRC, 1995).

  53. 53.

    et al. Human ageing genomic resources: integrated databases and tools for the biology and genetics of ageing. Nucleic Acids Res. 41, D1027–D1033 (2013).

  54. 54.

    et al. PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90, 2648–2648 (2009).

  55. 55.

    & Intrasexual competition and body weight dimorphism in anthropoid primates. Am. J. Phys. Anthropol. 103, 37–68 (1997).

  56. 56.

    & Body mass in comparative primatology. J. Hum. Evol. 32, 523–559 (1997).

  57. 57.

    & Nonconvergence in the evolution of primate life history and socio-ecology. Biol. J. Linn. Soc. 59, 297–326 (1996).

  58. 58.

    , , & Intra-and interpopulational differences in orangutan (Pongo pygmaeus) activity and diet: implications for the invention of tool use. Am. J. Phys. Anthropol. 125, 162–174 (2004).

  59. 59.

    Foraging Strategies in the Two Sympatric Mangabey Species (Cercocebus agilis and Lophocebus albigena) PhD thesis, Stony Brook Univ. (2003).

  60. 60.

    The socioecology of the black mangabey (Cercocebus aterrimus) near Lake Tumba, Zaire. Am. J. Primatol. 12, 165–180 (2007).

  61. 61.

    , , & Nutritional composition of the diet of the gorilla (Gorilla beringei): a comparison between two montane habitats. J. Trop. Ecol. 23, 673–682 (2007).

  62. 62.

    et al. in Guts and Brains: An Integrative Approach to the Hominin Record (ed. Roebroeks, W.) 47–90 (Leiden Univ. Press, 2007).

  63. 63.

    & Neocortical development and social structure in primates. Primates 31, 283–289 (1990).

  64. 64.

    , & Phylogenetic analyses of dimorphism in primates: evidence for stronger selection on canine size than on body size. Am. J. Phys. Anthropol. 130, 50–59 (2006).

  65. 65.

    in Comparative Primate Socioecology (ed. Lee, P. C.) 241–269 (Cambridge Univ. Press, 1999).

  66. 66.

    , & Stepwise evolution of stable sociality in primates. Nature 479, 219–222 (2011).

  67. 67.

    , , & Primate Societies (Univ. Chicago Press, 1987).

  68. 68.

    The Pictoral Guide to the Living Primates (Pogonias, 1996).

  69. 69.

    , , & Data quality and the comparative method: the case of primate group size. Int. J. Primatol. 35, 990–1003 (2014).

  70. 70.

    & Neocortex size and social network size in primates. Anim. Behav. 62, 711–722 (2001).

  71. 71.

    , & Constraints on group size in primates and carnivores: population density and day-range as assays of exploitation competition. Behav. Ecol. Sociobiol. 32, 199–209 (1993).

  72. 72.

    Functional significance of social grooming in primates. Folia Primatol. 57, 121–131 (1991).

  73. 73.

    & Primate ecology and social organization. J. Zool. 183, 1–39 (1977).

  74. 74.

    & Mammals of the Neotropics, Volume 2: The Southern Cone: Chile, Argentina, Uruguay, Paraguay (Univ. Chicago Press, 1992).

  75. 75.

    Modern Phylogenetic Comparative Methods and their Application in Evolutionary Biology (Springer, 2014).

  76. 76.

    & Network cohesion, group size and neocortex size in female-bonded Old World primates. Proc. R. Soc. B 276, 4417–4422 (2009).

  77. 77.

    & in Primate Communities (eds Fleagle, J. G., Janson, C. H. & Reed, K.) 237–267 (Cambridge Univ. Press, 1999).

  78. 78.

    Decision Support for Construction Cost Control in Developing Countries (IGI Global, 2016).

  79. 79.

    & Effects of sample size and intraspecific variation in phylogenetic comparative studies: a meta-analytic review. Biol. Rev. 85, 797–805 (2010).

  80. 80.

    Inferring the historical patterns of biological evolution. Nature 401, 877–884 (1999).

  81. 81.

    & BayesTraits V1 Manual (Univ. Reading, 2013).

  82. 82.

    , , & CODA: convergence diagnosis and output analysis for MCMC. R News 6, 7–11 (2006).

  83. 83.

    & BayesTraits V2 Manual (Univ. Reading, 2014).

  84. 84.

    MCMC methods for multiresponse generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).

  85. 85.

    et al. Ecology and mode-of-life explain lifespan variation in birds and mammals. Proc. R. Soc. B. 281, 20140298 (2014).

  86. 86.

    & Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992).

  87. 87.

    & Sensitivity of comparative analyses to population variation in trait values: clutch size and cavity excavation tendencies. J. Avian Biol. 31, 576–579 (2000).

  88. 88.

    , & APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).

  89. 89.

    phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

  90. 90.

    Evolution of the Brain and Intelligence (Elsevier, 2012).

  91. 91.

    & Endocranial morphology of Microchoerus erinaceus (Euprimates, Tarsiiformes) and early evolution of the Euprimates brain. Am. J. Phys. Anthropol. 159, 5–16 (2016).

Download references

Acknowledgements

We thank M. Shattuck for help with data compilation, H. Kaplan for providing access to additional data, R. Raaum for statistical advice, and R. Peterson and M. Petersdorf for encouragement and feedback on previous versions of the manuscript. For training in phylogenetic comparative methods, J.P.H. thanks the AnthroTree Workshop, which is supported by the National Science Foundation (NSF; BCS-0923791) and the National Evolutionary Synthesis Center (NSF grant EF-0905606). This material is based on work supported by the NSF Graduate Research Fellowship (grant DGE1342536).

Author information

Affiliations

  1. Department of Anthropology, New York University, 25 Waverly Place, New York, New York 10003, USA

    • Alex R. DeCasien
    • , Scott A. Williams
    •  & James P. Higham
  2. New York Consortium in Evolutionary Primatology, New York, New York 10024, USA

    • Alex R. DeCasien
    • , Scott A. Williams
    •  & James P. Higham

Authors

  1. Search for Alex R. DeCasien in:

  2. Search for Scott A. Williams in:

  3. Search for James P. Higham in:

Contributions

A.R.D. designed the project and performed the analyses with input from J.P.H. and S.A.W. A.R.D. and S.A.W. collected the data. All three authors wrote the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Alex R. DeCasien.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Figures 1–3, Supplementary Tables 1–107, Supplementary Text, Supplementary References.

Excel files

  1. 1.

    Supplementary Data 1

    Full dataset on brain size, body size, diet, social/mating systems, group size and estimates of early Eocene fossil primate brain volumes, complied from published literature sources.