Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

INTERSTELLAR MEDIUM

Magnetic fields from turbulent gas motions

The interstellar medium in our Galaxy is threaded by magnetic fields. A new method of inferring magnetic field directions from spectroscopic measurements of this turbulent medium provides insight into the role of these magnetic fields in molecular cloud formation and evolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A cartoon explaining the principles behind the velocity gradient technique.

References

  1. Hu, Y. et al. Nat. Astron. https://doi.org/10.1038/s41550-019-0769-0 (2019).

  2. González-Casanova, D. F. & Lazarian, A. Astrophys. J. 835, 41 (2017).

    Article  ADS  Google Scholar 

  3. Mac Low, M.-M. & Klessen, R. S. Rev. Mod. Phys. 76, 125–194 (2004).

    Article  ADS  Google Scholar 

  4. Planck Collaboration Astron. Astrophys. 576, A104 (2015).

  5. Hull, C. L. H. et al. Astrophys. J. 842, L9 (2017).

    Article  ADS  Google Scholar 

  6. Crutcher, R. M. Annu. Rev. Astron. Astrophys. 50, 29–63 (2012).

    Article  ADS  Google Scholar 

  7. Crutcher, R. M., Wandelt, B., Heiles, C., Falgarone, E. & Troland, T. H. Astrophys. J. 725, 466–479 (2010).

    Article  ADS  Google Scholar 

  8. Ching, T.-C. et al. Astrophys. J. 819, 159 (2016).

    Article  ADS  Google Scholar 

  9. Johnston-Hollitt, M. et al. Advancing Astrophysics with the Square Kilometre Array (AASKA14) 92 (PoS, 2015); https://pos.sissa.it/215/092/pdf

  10. Davis, L. Jr & Greenstein, J. L. Astrophys. J. 114, 206–240 (1951).

    Article  ADS  Google Scholar 

  11. Andersson, B.-G., Lazarian, A. & Vaillancourt, J. E. Annu. Rev. Astron. Astrophys. 53, 501–539 (2015).

    Article  ADS  Google Scholar 

  12. Hsieh, C. et al. Astrophys. J. 873, 16 (2019).

    Article  ADS  Google Scholar 

  13. Lockman, F. J., Benjamin, R. A., Heroux, A. J. & Langston, G. I. Astrophys. J. 679, L21 (2008).

    Article  ADS  Google Scholar 

  14. Hill, A. S., Mao, S. A., Benjamin, R. A., Lockman, F. J. & McClure-Griffiths, N. M. Astrophys. J. 777, 55 (2013).

    Article  ADS  Google Scholar 

  15. Auddy, S. et al. Astrophys. J. 872, 207 (2019).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kate Pattle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pattle, K. Magnetic fields from turbulent gas motions. Nat Astron 3, 692–693 (2019). https://doi.org/10.1038/s41550-019-0824-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-019-0824-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing