Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Special Issue: Current evidence and perspectives for hypertension management in Asia
  • Published:

Temporal relationship between hepatic steatosis and blood pressure elevation and the mediation effect in the development of cardiovascular disease

Abstract

The temporal relationship between non-alcoholic fatty liver disease (NAFLD) and hypertension remains highly controversial, with ongoing debates on whether NAFLD induces hypertension or vice versa. We employed cross-lagged panel models to investigate the temporal relationship between hepatic steatosis (assessed by Fatty Liver Index [FLI] in the main analysis, and by Proton Density Fat Fraction [PDFF] in the validation study) and blood pressure (systolic and diastolic blood pressure [SBP/ DBP]). Subsequently, we employed causal mediation models to explore the mediation effect in CVD development, including ischemic heart disease and stroke. The main analysis incorporated repeated measurement data of 5,047 participants from the China Multi-Ethnic Cohort (CMEC) and 5,685 participants from the UK Biobank (UKB). In both cohorts, the path coefficients from FLI to blood pressure were significant and greater than the path from blood pressure to FLI, with βFLI→SBP = 0.081, P < 0.001 versus βSBP→FLI = 0.020, P = 0.031; βFLI→DBP = 0.082, P < 0.001 versus βDBP→FLI = −0.006, P = 0.480 for CEMC, and βFLI→SBP = 0.057, P < 0.001 versus βSBP→FLI = −0.001, P = 0.727; βFLI→DBP = 0.061, P < 0.001, versus βDBP→FLI = −0.006, P = 0.263 for UKB. The validation study with 962 UKB participants using PDFF consistently supported these findings. In the mediation analyses encompassing 11,108 UKB participants, SBP and DBP mediated 12.2% and 5.2% of the hepatic steatosis-CVD association, respectively. The proportions were lower for ischemic heart disease (SBP: 6.1%, DBP: non-statistically significant −6.8%), and relatively stronger for stroke (SBP: 19.4%, DBP: 26.1%). In conclusion, hepatic steatosis more strongly contributes to elevated blood pressure than vice versa. Blood pressure elevation positively mediates the hepatic steatosis-CVD association, particularly in stroke compared to ischemic heart disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data from the China Multi-Ethnic Cohort can be obtained upon request from the author, Xing Zhao, via email at xingzhao@scu.edu.cn. Access to UK Biobank data can be requested through the official website (https://www.ukbiobank.ac.uk/).

References

  1. Lonardo A, Byrne CD, Caldwell SH, Cortez-Pinto H, Targher G. Global epidemiology of nonalcoholic fatty liver disease: Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64:1388–9.

    Article  CAS  PubMed  Google Scholar 

  2. Powell EE, Wong VW-S, Rinella M. Non-alcoholic fatty liver disease. Lancet. 2021;397:2212–24.

    Article  CAS  PubMed  Google Scholar 

  3. Mantovani A, Csermely A, Petracca G, Beatrice G, Corey KE, Simon TG, et al. Non-alcoholic fatty liver disease and risk of fatal and non-fatal cardiovascular events: an updated systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2021;6:903–13.

    Article  PubMed  Google Scholar 

  4. Hagström H, Kechagias S, Ekstedt M. Risk for hepatic and extra-hepatic outcomes in nonalcoholic fatty liver disease. J Intern Med. 2022;292:177–89.

    Article  PubMed  Google Scholar 

  5. Muzurović E, Peng CC-H, Belanger MJ, Sanoudou D, Mikhailidis DP, Mantzoros CS. Nonalcoholic fatty liver disease and cardiovascular disease: a review of shared cardiometabolic risk factors. Hypertension. 2022;79:1319–26.

    Article  PubMed  Google Scholar 

  6. López-Suárez A, Guerrero JMR, Elvira-González J, Beltrán-Robles M, Cañas-Hormigo F, Bascuñana-Quirell A. Nonalcoholic fatty liver disease is associated with blood pressure in hypertensive and nonhypertensive individuals from the general population with normal levels of alanine aminotransferase. Eur J Gastroenterol Hepatol. 2011;23:1011.

    Article  PubMed  Google Scholar 

  7. Lorbeer R, Bayerl C, Auweter S, Rospleszcz S, Lieb W, Meisinger C, et al. Association between MRI-derived hepatic fat fraction and blood pressure in participants without history of cardiovascular disease. J Hypertens. 2017;35:737.

    Article  CAS  PubMed  Google Scholar 

  8. Lonardo A, Nascimbeni F, Mantovani A, Targher G. Hypertension, diabetes, atherosclerosis and NASH: Cause or consequence? J Hepatol. 2018;68:335–52.

    Article  PubMed  Google Scholar 

  9. Zhao Y-C, Zhao G-J, Chen Z, She Z-G, Cai J, Li H. Nonalcoholic fatty liver disease an emerging driver of hypertension. Hypertension. 2020;75:275–84.

    Article  CAS  PubMed  Google Scholar 

  10. Li G, Peng Y, Chen Z, Li H, Liu D, Ye X. Bidirectional association between hypertension and NAFLD: A systematic review and meta-analysis of observational studies. Int J Endocrinol. 2022;2022:8463640.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Xie J, Huang H, Liu Z, Li Y, Yu C, Xu L, et al. The associations between modifiable risk factors and nonalcoholic fatty liver disease: A comprehensive Mendelian randomization study. Hepatology. 2023;77:949–64.

    Article  PubMed  Google Scholar 

  12. Liu Z, Suo C, Fan H, Zhang T, Jin L, Chen X. Dissecting causal relationships between nonalcoholic fatty liver disease proxied by chronically elevated alanine transaminase levels and 34 extrahepatic diseases. Metabolism. 2022;135:155270.

    Article  CAS  PubMed  Google Scholar 

  13. Deng K, Shuai M, Zhang Z, Jiang Z, Fu Y, Shen L, et al. Temporal relationship among adiposity, gut microbiota, and insulin resistance in a longitudinal human cohort. BMC Med. 2022;20:171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zheng M, Zhang X, Chen S, Song Y, Zhao Q, Gao X, et al. Arterial stiffness preceding diabetes. Circ Res. 2020;127:1491–8.

    Article  CAS  PubMed  Google Scholar 

  15. Han T, Lan L, Qu R, Xu Q, Jiang R, Na L, et al. Temporal relationship between Hyperuricemia and Insulin resistance and its impact on future risk of hypertension. Hypertension. 2017;70:703–11.

    Article  CAS  PubMed  Google Scholar 

  16. Zhao X, Hong F, Yin J, Tang W, Zhang G, Liang X, et al. Cohort profile: the China Multi-Ethnic cohort (CMEC) study. Int J Epidemiol. 2020;00:14.

    Google Scholar 

  17. UK Biobank - UK Biobank [Internet]. [cited 2023 Mar 14]. Available from: https://www.ukbiobank.ac.uk/.

  18. European Association for the Study of the Liver (EASL), European Association for the Study of Diabetes (EASD), European Association for the Study of Obesity (EASO). EASL-EASD-EASO Clinical Practice Guidelines for the Management of Non-Alcoholic Fatty Liver Disease. Obesity Facts 2016;9:65–90. https://doi.org/10.1159/000443344

  19. Whelton PK, Carey RM, Aronow WS, Casey DE, Collins KJ, Dennison Himmelfarb C, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension. 2018;71:e13–115.

    CAS  PubMed  Google Scholar 

  20. Bedogni G, Bellentani S, Miglioli L, Masutti F, Passalacqua M, Castiglione A, et al. The Fatty Liver Index: a simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterol. 2006;6:33.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lee J-H, Kim D, Kim HJ, Lee C-H, Yang JI, Kim W, et al. Hepatic steatosis index: A simple screening tool reflecting nonalcoholic fatty liver disease. Dig Liver Dis. 2010;42:503–8.

    Article  CAS  PubMed  Google Scholar 

  22. Wong VW-S, Adams LA, de Lédinghen V, Wong GL-H, Sookoian S. Noninvasive biomarkers in NAFLD and NASH — current progress and future promise. Nat Rev Gastroenterol Hepatol. 2018;15:461–78.

    Article  CAS  PubMed  Google Scholar 

  23. Chang Y, Cho J, Cho YK, Cho A, Hong YS, Zhao D, et al. Alcoholic and nonalcoholic fatty liver disease and incident hospitalization for liver and cardiovascular diseases. Clin Gastroenterol Hepatol. 2020;18:205–15.e7.

    Article  PubMed  Google Scholar 

  24. Simon TG, Roelstraete B, Hagström H, Sundström J, Ludvigsson JF. Non-alcoholic fatty liver disease and incident major adverse cardiovascular events: results from a nationwide histology cohort. Gut. 2022;71:1867–75.

    Article  PubMed  Google Scholar 

  25. Usami S, Murayama K, Hamaker EL. A unified framework of longitudinal models to examine reciprocal relations. Psychol Methods. 2019;24:637.

    Article  PubMed  Google Scholar 

  26. Chalasani N, Younossi Z, Lavine JE, Charlton M, Cusi K, Rinella M, et al. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology. 2018;67:328–57.

    Article  PubMed  Google Scholar 

  27. Polyzos SA, Kountouras J, Mantzoros CS. Obesity and nonalcoholic fatty liver disease: From pathophysiology to therapeutics. Metab - Clin Exp 2019;92:82–97.

    Article  CAS  PubMed  Google Scholar 

  28. Hu L, Bentler PM. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct Equ Model: Multidiscip J. 1999;6:1–55.

    Article  Google Scholar 

  29. VanderWeele T. Explanation in causal inference: methods for mediation and interaction. New York: Oxford University Press; 2015.

  30. White IR, Royston P, Wood AM. Multiple imputation using chained equations: Issues and guidance for practice. Stat Med. 2011;30:377–99.

    Article  PubMed  Google Scholar 

  31. Yuan S, Chen J, Li X, Fan R, Arsenault B, Gill D, et al. Lifestyle and metabolic factors for nonalcoholic fatty liver disease: Mendelian randomization study. Eur J Epidemiol. 2022;37:723–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang Z, Li L, Hu Z, Zhou L, Zhang Z, Xiong Y, et al. The causal associations of non-alcoholic fatty liver disease with blood pressure and the mediating effects of cardiometabolic risk factors: A Mendelian randomization study. Nutrition, Metabolism and Cardiovascular Diseases [Internet]. 2023 [cited 2023 Sep 18]; Available from: https://www.sciencedirect.com/science/article/pii/S093947532300279X.

  33. Thompson SB, Simon G. Mendelian Randomization: Methods for Causal Inference Using Genetic Variants. 2nd ed. New York: Chapman and Hall/CRC; 2021.

  34. Bonnet F, Gastaldelli A, Pihan-Le bars F, Natali A, Roussel R, Petrie J, et al. Gamma-glutamyltransferase, fatty liver index and hepatic insulin resistance are associated with incident hypertension in two longitudinal studies. J Hypertens. 2017;35:493.

    Article  CAS  PubMed  Google Scholar 

  35. Byrne CD, Targher G. Non-alcoholic fatty liver disease-related risk of cardiovascular disease and other cardiac complications. Diabetes Obes Metab. 2022;24:28–43.

    Article  PubMed  Google Scholar 

  36. Targher G, Byrne CD, Tilg H. NAFLD and increased risk of cardiovascular disease: clinical associations, pathophysiological mechanisms and pharmacological implications. Gut. 2020;69:1691–705.

    Article  CAS  PubMed  Google Scholar 

  37. Carnagarin R, Matthews V, Zaldivia MTK, Peter K, Schlaich MP. The bidirectional interaction between the sympathetic nervous system and immune mechanisms in the pathogenesis of hypertension. Br J Pharm. 2019;176:1839–52.

    Article  CAS  Google Scholar 

  38. Lee HJ, Lee CH, Kim S, Hwang SY, Hong HC, Choi HY, et al. Association between vascular inflammation and non-alcoholic fatty liver disease: Analysis by 18F-fluorodeoxyglucose positron emission tomography. Metabolism. 2017;67:72–9.

    Article  CAS  PubMed  Google Scholar 

  39. Sinn DH, Kang D, Jang HR, Gu S, Cho SJ, Paik SW, et al. Development of chronic kidney disease in patients with non-alcoholic fatty liver disease: A cohort study. J Hepatol. 2017;67:1274–80.

    Article  PubMed  Google Scholar 

  40. Rojas E, Rodríguez-Molina D, Bolli P, Israili ZH, Faría J, Fidilio E, et al. The role of adiponectin in endothelial dysfunction and hypertension. Curr Hypertens Rep. 2014;16:463.

    Article  PubMed  Google Scholar 

  41. Oikonomou D, Georgiopoulos G, Katsi V, Kourek C, Tsioufis C, Alexopoulou A, et al. Non-alcoholic fatty liver disease and hypertension: coprevalent or correlated? Eur J Gastroenterol Hepatol. 2018;30:979–85.

    Article  PubMed  Google Scholar 

  42. Olivares-Reyes JA, Arellano-Plancarte A, Castillo-Hernandez JR. Angiotensin II and the development of insulin resistance: implications for diabetes. Mol Cell Endocrinol. 2009;302:128–39.

    Article  CAS  PubMed  Google Scholar 

  43. Warner FJ, Lubel JS, McCaughan GW, Angus PW. Liver fibrosis: a balance of ACEs? Clin Sci. 2007;113:109–18.

    Article  CAS  Google Scholar 

  44. Rapsomaniki E, Timmis A, George J, Pujades-Rodriguez M, Shah AD, Denaxas S, et al. Blood pressure and incidence of twelve cardiovascular diseases: lifetime risks, healthy life-years lost, and age-specific associations in 1·25 million people. Lancet. 2014;383:1899–911.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Law MR, Morris JK, Wald NJ. Use of blood pressure lowering drugs in the prevention of cardiovascular disease: meta-analysis of 147 randomised trials in the context of expectations from prospective epidemiological studies. BMJ. 2009;338:b1665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hu J, Xu Y, He Z, Zhang H, Lian X, Zhu T, et al. Increased risk of cerebrovascular accident related to non-alcoholic fatty liver disease: a meta-analysis. Oncotarget. 2018;9:2752–60.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research has been conducted using the UK Biobank resource under Application Number 117185.

Funding

This study was sponsored by the National Natural Science Foundation of China (Grant no. 82273740). The CMEC study was funded by the National Key R&D Program of China (Grant no. 2017YFCO907300).

Author information

Authors and Affiliations

Authors

Contributions

Study concept and design: YH, XX; acquisition of data: XZ, WT, HX, D, TY, ZY, CX; analysis and interpretation of data: YH, YL, NZ, XZ, DT, YZ; drafting of the manuscript: YH, critical revision of the manuscript: XX, XZ. All authors approved the final version of the article.

Corresponding author

Correspondence to Xiong Xiao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Tang, W., Liu, Y. et al. Temporal relationship between hepatic steatosis and blood pressure elevation and the mediation effect in the development of cardiovascular disease. Hypertens Res (2024). https://doi.org/10.1038/s41440-024-01708-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41440-024-01708-5

Keyword

Search

Quick links