Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Adrenomedullin improved endothelial dysfunction via receptor-Akt pathway in rats with obesity-related hypertension

Abstract

Obesity-related hypertension (OH) is accompanied by obvious endothelial dysfunction, which contributes to increased peripheral vascular resistance and hypertension. Adrenomedullin (ADM), a multifunctional active peptide, is elevated in obese humans. The OH rats induced by high fat diet (HFD) for 28 weeks and the human umbilical vein endothelial cells (HUVECs)-treated by palmitic acid (PA) were used to investigate the effects of ADM on endothelial dysfunction and the underlying mechanisms. Vascular reactivity was assessed using mesenteric arteriole rings, and the protein expression levels were examined by Western blot analysis. Compared with the control rats, OH rats exhibited hypertension and endothelial dysfunction, along with reduced eNOS protein expression and Akt activation, and increased protein expression of proinflammatory cytokines and ROS levels. Four-week ADM administration improved hypertension and endothelial function, increased eNOS protein expression and Akt activation, and attenuated endothelial inflammation and oxidative stress in OH rats. In vitro experiment, the antagonism of ADM receptors with ADM22-52 and the suppression of Akt signaling with A6730 significantly blocked ADM-caused increase of NO content and activation of eNOS and Akt, and inhibited the anti-inflammatory and anti-oxidant effect of ADM in PA-stimulated HUVECs. These data indicate that endothelial dysfunction in OH rats is partially attributable to the decreased NO level, and the increased inflammation and oxidative stress. ADM improves endothelial function and exerts hypotensive effect depending on the increase of NO, and its anti-inflammatory and anti-oxidant effect via receptor-Akt pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data of this study will be available from the authors according to reasonable requests.

References

  1. Lin X, Li H. Obesity: Epidemiology, Pathophysiology, and Therapeutics. Front Endocrinol (Lausanne). 2021;12:706978.

    Article  PubMed  Google Scholar 

  2. Piche ME, Tchernof A, Despres JP. Obesity Phenotypes, Diabetes, and Cardiovascular Diseases. Circ Res. 2020;126:1477–1500.

    Article  CAS  PubMed  Google Scholar 

  3. Seravalle G, Grassi G. Obesity and hypertension. Pharm Res. 2017;122:1–7.

    Article  CAS  Google Scholar 

  4. Silveira Rossi JL, Barbalho SM, Reverete de Araujo R, Bechara MD, Sloan KP, Sloan LA. Metabolic syndrome and cardiovascular diseases: Going beyond traditional risk factors. Diabetes Metab Res Rev. 2022;38:e3502.

    Article  CAS  PubMed  Google Scholar 

  5. Virdis A, Neves MF, Duranti E, Bernini G, Taddei S. Microvascular endothelial dysfunction in obesity and hypertension. Curr Pharm Des. 2013;19:2382–9.

    Article  CAS  PubMed  Google Scholar 

  6. Gallo G, Volpe M, Savoia C. Endothelial Dysfunction in Hypertension: Current Concepts and Clinical Implications. Front Med (Lausanne). 2021;8:798958.

    Article  PubMed  Google Scholar 

  7. Gao J, Pan X, Li G, Chatterjee E, Xiao J. Physical Exercise Protects Against Endothelial Dysfunction in Cardiovascular and Metabolic Diseases. J Cardiovasc Transl Res. 2022;15:604–20.

    Article  PubMed  Google Scholar 

  8. Jebari-Benslaiman S, Galicia-Garcia U, Larrea-Sebal A, Olaetxea JR, Alloza I, Vandenbroeck K, et al. Pathophysiology of Atherosclerosis. Int J Mol Sci. 2022;23:3346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cyr AR, Huckaby LV, Shiva SS, Zuckerbraun BS. Nitric Oxide and Endothelial Dysfunction. Crit Care Clin. 2020;36:307–21.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mallick R, Duttaroy AK. Modulation of endothelium function by fatty acids. Mol Cell Biochem. 2022;477:15–38.

    Article  CAS  PubMed  Google Scholar 

  11. Rana MN, Neeland IJ. Adipose Tissue Inflammation and Cardiovascular Disease: An Update. Curr Diab Rep. 2022;22:27–37.

    Article  CAS  PubMed  Google Scholar 

  12. Engin A. Endothelial Dysfunction in Obesity. Adv Exp Med Biol. 2017;960:345–79.

    Article  CAS  PubMed  Google Scholar 

  13. Marziano C, Genet G, Hirschi KK. Vascular endothelial cell specification in health and disease. Angiogenesis. 2021;24:213–36.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Fernandez-Sanchez A, Madrigal-Santillan E, Bautista M, Esquivel-Soto J, Morales-Gonzalez A, Esquivel-Chirino C, et al. Inflammation, oxidative stress, and obesity. Int J Mol Sci. 2011;12:3117–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Iantorno, M; Campia, U; Di Daniele, N; Nistico, S; Forleo, GB; Cardillo, C; et al. Obesity, inflammation and endothelial dysfunction. (0393-974X (Print)).

  16. Chrysant SG. Pathophysiology and treatment of obesity-related hypertension. J Clin Hypertens (Greenwich). 2019;21:555–9.

    Article  PubMed  Google Scholar 

  17. Cohen JB, Gadde KM. Weight Loss Medications in the Treatment of Obesity and Hypertension. Curr Hypertens Rep. 2019;21:16.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cheung BM, Tang F. Adrenomedullin: exciting new horizons. Recent Pat Endocr Metab Immune Drug Discov. 2012;6:4–17.

    Article  CAS  PubMed  Google Scholar 

  19. Hay DL, Garelja ML, Poyner DR, Walker CS. Update on the pharmacology of calcitonin/CGRP family of peptides: IUPHAR Review 25. Br J Pharm. 2018;175:3–17.

    Article  CAS  Google Scholar 

  20. Kato J, Kitamura K. Bench-to-bedside pharmacology of adrenomedullin. Eur J Pharm. 2015;764:140–8.

    Article  CAS  Google Scholar 

  21. Metwalley KA, Farghaly HS, Sherief T. Plasma adrenomedullin level in children with obesity: relationship to left ventricular function. World J Pediatr. 2018;14:84–91.

    Article  CAS  PubMed  Google Scholar 

  22. Nomura I, Kato J, Tokashiki M, Kitamura K. Increased plasma levels of the mature and intermediate forms of adrenomedullin in obesity. Regul Pept. 2009;158:127–31.

    Article  CAS  PubMed  Google Scholar 

  23. Theuerle J, Farouque O, Vasanthakumar S, Patel SK, Burrell LM, Clark DJ, et al. Plasma endothelin-1 and adrenomedullin are associated with coronary artery function and cardiovascular outcomes in humans. Int J Cardiol. 2019;291:168–72.

    Article  PubMed  Google Scholar 

  24. Hosomi N, Ohyama H, Takahashi T, Shinomiya K, Naya T, Ban CR, et al. Plasma adrenomedullin and carotid atherosclerosis in atherothrombotic ischemic stroke. J Hypertens. 2004;22:1945–51.

    Article  CAS  PubMed  Google Scholar 

  25. Yuyun MF, Narayan HK, Quinn PA, Struck J, Bergmann A, Hartmann O, et al. Prognostic value of human mature adrenomedullin in patients with acute myocardial infarction. J Cardiovasc Med (Hagerstown). 2017;18:42–50.

    Article  CAS  PubMed  Google Scholar 

  26. Voors AA, Kremer D, Geven C, Ter Maaten JM, Struck J, Bergmann A, et al. Adrenomedullin in heart failure: pathophysiology and therapeutic application. Eur J Heart Fail. 2019;21:163–71.

    Article  CAS  PubMed  Google Scholar 

  27. Yuan M, Wang Q, Li C, Tao L, Zhang H, Wang H, et al. Adrenomedullin in Vascular Endothelial Injury and Combination Therapy: Time for a New Paradigm. Curr Vasc Pharm. 2015;13:459–66.

    Article  CAS  Google Scholar 

  28. Murakami S, Kimura H, Kangawa K, Nagaya N, Physiological significance and therapeutic potential of adrenomedullin in pulmonary hypertension. (1871-529X (Print)).

  29. Makino I, Shibata K, Makino Y, Kangawa K, Kawarabayashi T. Adrenomedullin attenuates the hypertension in hypertensive pregnant rats induced by N(G)-nitro-L-arginine methyl ester. Eur J Pharm. 1999;371:159–67.

    Article  CAS  Google Scholar 

  30. Geven C, Bergmann A, Kox M, Pickkers P. Vascular Effects of Adrenomedullin and the Anti-Adrenomedullin Antibody Adrecizumab in Sepsis. Shock. 2018;50:132–40.

    Article  CAS  PubMed  Google Scholar 

  31. Yanagawa B, Nagaya N. Adrenomedullin: molecular mechanisms and its role in cardiac disease. Amino Acids. 2007;32:157–64.

    Article  CAS  PubMed  Google Scholar 

  32. Hamid SA, Baxter GF. A critical cytoprotective role of endogenous adrenomedullin in acute myocardial infarction. J Mol Cell Cardiol. 2006;41:360–3.

    Article  CAS  PubMed  Google Scholar 

  33. Fung E, Fiscus RR. Adrenomedullin induces direct (endothelium-independent) vasorelaxations and cyclic adenosine monophosphate elevations that are synergistically enhanced by brain natriuretic peptide in isolated rings of rat thoracic aorta. J Cardiovasc Pharm. 2003;41:849–55.

    Article  CAS  Google Scholar 

  34. Qian P, Wang Q, Wang FZ, Dai HB, Wang HY, Gao Q, et al. Adrenomedullin Improves Cardiac Remodeling and Function in Obese Rats with Hypertension. Pharm (Basel). 2022;15:719.

    CAS  Google Scholar 

  35. Estrada IA, Donthamsetty R, Debski P, Zhou MH, Zhang SL, Yuan JX, et al. STIM1 restores coronary endothelial function in type 1 diabetic mice. Circ Res. 2012;111:1166–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Konior A, Schramm A, Czesnikiewicz-Guzik M, Guzik TJ. NADPH oxidases in vascular pathology. Antioxid Redox Signal. 2014;20:2794–814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Boden G. Obesity and free fatty acids. Endocrinol Metab Clin North Am. 2008;37:635–46. viii-ix

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang M, Chen Y, Xiong Z, Yu S, Zhou B, Ling Y, et al. Ginsenoside Rb1 inhibits free fatty acids‑induced oxidative stress and inflammation in 3T3‑L1 adipocytes. Mol Med Rep. 2017;16:9165–72.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang S, Patel A, Moorthy B, Shivanna B. Adrenomedullin deficiency potentiates hyperoxic injury in fetal human pulmonary microvascular endothelial cells. Biochem Biophys Res Commun. 2015;464:1048–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shimosawa T, Shibagaki Y, Ishibashi K, Kitamura K, Kangawa K, Kato S, et al. Adrenomedullin, an endogenous peptide, counteracts cardiovascular damage. Circulation. 2002;105:106–11.

    Article  CAS  PubMed  Google Scholar 

  41. Shimosawa T, Ogihara T, Matsui H, Asano T, Ando K, Fujita T. Deficiency of adrenomedullin induces insulin resistance by increasing oxidative stress. Hypertension. 2003;41:1080–5.

    Article  CAS  PubMed  Google Scholar 

  42. Ashizuka S, Kita T, Inatsu H, Kitamura K. Adrenomedullin: A Novel Therapeutic for the Treatment of Inflammatory Bowel Disease. Biomedicines. 2021;9:1068.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gadkari TV, Cortes N, Madrasi K, Tsoukias NM, Joshi MS. Agmatine induced NO dependent rat mesenteric artery relaxation and its impairment in salt-sensitive hypertension. Nitric Oxide. 2013;35:65–71.

    Article  CAS  PubMed  Google Scholar 

  44. Cottam MA, Caslin HL, Winn NC, Hasty AH. Multiomics reveals persistence of obesity-associated immune cell phenotypes in adipose tissue during weight loss and weight regain in mice. Nat Commun. 2022;13:2950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kiran S, Rakib A, Kodidela S, Kumar S, Singh UP. High-Fat Diet-Induced Dysregulation of Immune Cells Correlates with Macrophage Phenotypes and Chronic Inflammation in Adipose Tissue. Cells. 2022;11:1327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Steven S, Dib M, Hausding M, Kashani F, Oelze M, Kröller-Schön S, et al. CD40L controls obesity-associated vascular inflammation, oxidative stress, and endothelial dysfunction in high fat diet-treated and db/db mice. Cardiovasc Res. 2018;114:312–23.

    Article  CAS  PubMed  Google Scholar 

  47. Matson BC, Caron KM. Adrenomedullin and endocrine control of immune cells during pregnancy. Cell Mol Immunol. 2014;11:456–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Han J, Wan Q, Seo GY, Kim K, El Baghdady S, Lee JH, et al. Hypoxia induces adrenomedullin from lung epithelia, stimulating ILC2 inflammation and immunity. J Exp Med. 2022;219:e20211985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nomura I, Abe J, Noma S, Saito H, Gao B, Wheeler G, et al. Adrenomedullin is highly expressed in blood monocytes associated with acute Kawasaki disease: a microarray gene expression study. Pediatr Res. 2005;57:49–55.

    Article  CAS  PubMed  Google Scholar 

  50. Ghosh A, Gao L, Thakur A, Siu PM, Lai CWK. Role of free fatty acids in endothelial dysfunction. J Biomed Sci. 2017;24:50.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kato J, Tsuruda T, Kita T, Kitamura K, Eto T. Adrenomedullin: a protective factor for blood vessels. Arterioscler Thromb Vasc Biol. 2005;25:2480–7.

    Article  CAS  PubMed  Google Scholar 

  52. Imai Y, Shindo T, Maemura K, Sata M, Saito Y, Kurihara Y, et al. Resistance to neointimal hyperplasia and fatty streak formation in mice with adrenomedullin overexpression. Arterioscler Thromb Vasc Biol. 2002;22:1310–5.

    Article  CAS  PubMed  Google Scholar 

  53. Balakumar P, Kathuria S, Taneja G, Kalra S, Mahadevan N. Is targeting eNOS a key mechanistic insight of cardiovascular defensive potentials of statins? J Mol Cell Cardiol. 2012;52:83–92.

    Article  CAS  PubMed  Google Scholar 

  54. Bruno RM, Masi S, Taddei M, Taddei S, Virdis A. Essential Hypertension and Functional Microvascular Ageing. High Blood Press Cardiovasc Prev. 2018;25:35–40.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

All the authors thank the support of the Collaborative Innovation Center of Cardiovascular Disease Translational Medicine.

Funding

This work was funded by the National Nature Science Foundation of China (81970356), the Foundation from the Department of Health of Jiangsu Province, China (LKM2023029) and the Scientific Research Project of Jiangsu Health Commission (Z2018033).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ye-Bo Zhou or Zhen-Zhen Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Consent for publication

This study is comprised of animal data without any human data.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, SY., Wang, Q., Zhou, H. et al. Adrenomedullin improved endothelial dysfunction via receptor-Akt pathway in rats with obesity-related hypertension. Hypertens Res (2024). https://doi.org/10.1038/s41440-024-01701-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41440-024-01701-y

Keywords

Search

Quick links