Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Hypertension facilitates age-related diseases. ~ Is hypertension associated with a wide variety of diseases?~

Abstract

Hypertension, a disease whose prevalence increases with age, induces pathological conditions of ischemic vascular disorders such as cerebral infarction and myocardial infarction due to accelerated arteriosclerosis and circulatory insufficiency of small arteries and sometimes causes hemorrhagic conditions such as cerebral hemorrhage and ruptured aortic aneurysm. On the other hand, as it is said that aging starts with the blood vessels, impaired blood flow associated with vascular aging is the basis for the development of many pathological conditions, and ischemic changes in target organs associated with vascular disorders result in tissue dysfunction and degeneration, inducing organ hypofunction and dysfunction. Therefore, we hypothesized that hypertension is associated with all age-related vascular diseases, and attempted to review the relationship between hypertension and diseases for which a relationship has not been previously well reported. Following our review, we hope that a collaborative effort to unravel age-related diseases from the perspective of hypertension will be undertaken together with experts in various specialties regarding the relationship of hypertension to all pathological conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. Guideline for the pharmacological treatment of hypertension in adults: Geneva: World Health Organization; 2021.

  2. Cheung CY, Biousse V, Keane PA, Schiffrin EL, Wong TY. Hypertensive eye disease. Nat Rev Dis Prim. 2022;8:14.

    Article  PubMed  Google Scholar 

  3. Leeman M, Kestelyn P. Glaucoma and blood pressure. Hypertension. 2019;73:944–50.

    Article  CAS  PubMed  Google Scholar 

  4. Yasukawa T, Hanyuda A, Yamagishi K, Yuki K, Uchino M, Ozawa Y, et al. Relationship between blood pressure and intraocular pressure in the JPHC-NEXT eye study. Sci Rep. 2022;12:17493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Leung G, Grant A, Garas AN, Li G, Freeman EE. A systematic review and meta-analysis of systemic antihypertensive medications with intraocular pressure and glaucoma. Am J Ophthalmol. 2023;255:7–17.

    Article  CAS  PubMed  Google Scholar 

  6. Ho H, Shi Y, Chua J, Tham YC, Lim SH, Aung T, et al. Association of systemic medication use with intraocular pressure in a multiethnic Asian population: The Singapore Epidemiology of Eye Diseases Study. JAMA Ophthalmol. 2017;135:196–202.

    Article  PubMed  Google Scholar 

  7. Kastner A, Stuart KV, Montesano G, De Moraes CG, Kang JH, Wiggs JL, et al. Calcium channel blocker use and associated glaucoma and related traits among UK Biobank participants. JAMA Ophthalmol. 2023. e-pub ahead of print 20230907; https://doi.org/10.1001/jamaophthalmol.2023.3877.

  8. Huang Y, Yuan Y, Wang Y, Hui Z, Shang X, Chen Y, et al. Effects of blood pressure and arterial stiffness on retinal neurodegeneration: cross-sectional and longitudinal evidence from UK Biobank and Chinese cohorts. Hypertension. 2023;80:629–39.

    Article  CAS  PubMed  Google Scholar 

  9. Chong RS, Chee ML, Tham YC, Majithia S, Thakur S, Teo ZL, et al. Association of antihypertensive medication with retinal nerve fiber layer and ganglion cell-inner plexiform layer thickness. Ophthalmology. 2021;128:393–400.

    Article  PubMed  Google Scholar 

  10. Afsar B, Afsar RE, Dagel T, Kaya E, Erus S, Ortiz A, et al. Capillary rarefaction from the kidney point of view. Clin Kidney J. 2018;11:295–301.

    Article  CAS  PubMed  Google Scholar 

  11. Lowry EA, Sanders DS. Hypertension management and glaucoma: hypothesizing causes in correlational data. Ophthalmology. 2021;128:401–2.

    Article  PubMed  Google Scholar 

  12. Hirooka K, Kiuchi Y. The retinal renin-angiotensin-aldosterone system: implications for glaucoma. Antioxid (Basel). 2022;11:610.

    Article  CAS  Google Scholar 

  13. Birk M, Baum E, Zadeh JK, Manicam C, Pfeiffer N, Patzak A, et al. Angiotensin II induces oxidative stress and endothelial dysfunction in mouse ophthalmic arteries via involvement of AT1 receptors and NOX2. Antioxid (Basel). 2021;10:1238.

    Article  CAS  Google Scholar 

  14. Nitta E, Hirooka K, Tenkumo K, Fujita T, Nishiyama A, Nakamura T, et al. Aldosterone: a mediator of retinal ganglion cell death and the potential role in the pathogenesis in normal-tension glaucoma. Cell Death Dis. 2013;4:e711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Semba K, Namekata K, Guo X, Harada C, Harada T, Mitamura Y. Renin-angiotensin system regulates neurodegeneration in a mouse model of normal tension glaucoma. Cell Death Dis. 2014;5:e1333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. He Z, Vingrys AJ, Armitage JA, Nguyen CT, Bui BV. Chronic hypertension increases susceptibility to acute IOP challenge in rats. Invest Ophthalmol Vis Sci. 2014;55:7888–95.

    Article  PubMed  Google Scholar 

  17. Szmyd L Jr, Schwartz B. Association of systemic hypertension and diabetes mellitus with cataract extraction: a case-control study. Ophthalmology. 1989;96:1248–52.

    Article  PubMed  Google Scholar 

  18. Lindblad BE, Hakansson N, Philipson B, Wolk A. Metabolic syndrome components in relation to risk of cataract extraction: a prospective cohort study of women. Ophthalmology. 2008;115:1687–92.

    Article  PubMed  Google Scholar 

  19. Yu X, Lyu D, Dong X, He J, Yao K. Hypertension and risk of cataract: a meta-analysis. PLoS One. 2014;9:e114012.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Choudhary R, Bodakhe SH. Magnesium taurate prevents cataractogenesis via restoration of lenticular oxidative damage and ATPase function in cadmium chloride-induced hypertensive experimental animals. Biomed Pharmacother. 2016;84:836–44.

    Article  CAS  PubMed  Google Scholar 

  21. Choudhary R, Bodakhe SH. Olmesartan, an angiotensin II receptor blocker inhibits the progression of cataract formation in cadmium chloride induced hypertensive albino rats. Life Sci. 2016;167:105–12.

    Article  CAS  PubMed  Google Scholar 

  22. Yang HL, Byun SJ, Park S, Lee SH, Park SJ, Jung SY. Antihypertensive use and the risk of cataract in patients with hypertension: a nationwide case-control study. Ophthalmic Epidemiol. 2023;30:499–508.

    Article  CAS  PubMed  Google Scholar 

  23. Khan SA, Choudhary R, Singh A, Bodakhe SH. Hypertension potentiates cataractogenesis in rat eye through modulation of oxidative stress and electrolyte homeostasis. J Curr Ophthalmol. 2016;28:123–30.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Choudhary R, Shree J, Singh A, Bodakhe SH. Role of the renin-angiotensin system in the development of cataract formation in angiotensin-II-induced experimental rats. J Biochem Mol Toxicol. 2021;35:e22789.

    Article  CAS  PubMed  Google Scholar 

  25. Shree J, Singh A, Choudhary R, Pandey DP, Bodakhe SH. Topical administration of ACE inhibitor interrupts the progression of cataract in two kidney one clip induced hypertensive cataract model. Curr Eye Res. 2022;47:399–408.

    Article  CAS  PubMed  Google Scholar 

  26. Hyman L, Schachat AP, He Q, Leske MC. Hypertension, cardiovascular disease, and age-related macular degeneration. Age-related macular degeneration risk factors study group. Arch Ophthalmol. 2000;118:351–8.

    Article  CAS  PubMed  Google Scholar 

  27. Hogg RE, Woodside JV, Gilchrist SE, Graydon R, Fletcher AE, Chan W, et al. Cardiovascular disease and hypertension are strong risk factors for choroidal neovascularization. Ophthalmology. 2008;115:1046–52 e2.

    Article  PubMed  Google Scholar 

  28. Tan JS, Mitchell P, Smith W, Wang JJ. Cardiovascular risk factors and the long-term incidence of age-related macular degeneration: the Blue Mountains Eye Study. Ophthalmology. 2007;114:1143–50.

    Article  PubMed  Google Scholar 

  29. Katsi VK, Marketou ME, Vrachatis DA, Manolis AJ, Nihoyannopoulos P, Tousoulis D, et al. Essential hypertension in the pathogenesis of age-related macular degeneration: a review of the current evidence. J Hypertens. 2015;33:2382–8.

    Article  CAS  PubMed  Google Scholar 

  30. Striker GE, Praddaude F, Alcazar O, Cousins SW, Marin-Castano ME. Regulation of angiotensin II receptors and extracellular matrix turnover in human retinal pigment epithelium: role of angiotensin II. Am J Physiol Cell Physiol. 2008;295:C1633–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pons M, Cousins SW, Alcazar O, Striker GE, Marin-Castano ME. Angiotensin II-induced MMP-2 activity and MMP-14 and basigin protein expression are mediated via the angiotensin II receptor type 1-mitogen-activated protein kinase 1 pathway in retinal pigment epithelium: implications for age-related macular degeneration. Am J Pathol. 2011;178:2665–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Praddaude F, Cousins SW, Pecher C, Marin-Castano ME. Angiotensin II-induced hypertension regulates AT1 receptor subtypes and extracellular matrix turnover in mouse retinal pigment epithelium. Exp Eye Res. 2009;89:109–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hansen CC. Perceptive hearing loss and arterial hypertension. Arch Otolaryngol. 1968;87:119–22.

    Article  CAS  PubMed  Google Scholar 

  34. Miyata J, Umesawa M, Yoshioka T, Iso H. Association between high systolic blood pressure and objective hearing impairment among Japanese adults: a facility-based retrospective cohort study. Hypertens Res. 2022;45:155–61.

    Article  PubMed  Google Scholar 

  35. Reed NS, Huddle MG, Betz J, Power MC, Pankow JS, Gottesman R, et al. Association of midlife hypertension with late-life hearing loss. Otolaryngol Head Neck Surg. 2019;161:996–1003.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ting J, Jiang K, Du S, Betz J, Reed N, Power MC, et al. Longitudinal blood pressure patterns from mid- to late life and late-life hearing loss in the Atherosclerosis Risk in Communities Study. J Gerontol A Biol Sci Med Sci. 2022;77:640–6.

    Article  PubMed  Google Scholar 

  37. Kim SJ, Reed N, Betz JF, Abraham A, Lee MJ, Sharrett AR, et al. Association between microvascular retinal signs and age-related hearing loss in the Atherosclerosis Risk in Communities Neurocognitive Study (ARIC-NCS). JAMA Otolaryngol Head Neck Surg. 2020;146:152–9.

    Article  PubMed  Google Scholar 

  38. Lee H, Sohn SI, Jung DK, Cho YW, Lim JG, Yi SD, et al. Sudden deafness and anterior inferior cerebellar artery infarction. Stroke. 2002;33:2807–12.

    Article  PubMed  Google Scholar 

  39. Saba ES, Swisher AR, Ansari GN, Rivero A. Cardiovascular risk factors in patients with sudden sensorineural hearing loss: a systematic review and meta-analysis. Otolaryngol Head Neck Surg. 2023;168:907–21.

    Article  PubMed  Google Scholar 

  40. Simoes J, Vlaminck S, Seica RMF, Acke F, Migueis ACE. Cardiovascular risk and sudden sensorineural hearing loss: a systematic review and meta-analysis. Laryngoscope. 2023;133:15–24.

    Article  PubMed  Google Scholar 

  41. Xie W, Karpeta N, Tong B, Liu J, Peng H, Li C, et al. Etiological analysis of patients with sudden sensorineural hearing loss: a prospective case-control study. Sci Rep. 2023;13:5221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. McCormick JG, Harris DT, Hartley CB, Lassiter RB. Spontaneous genetic hypertension in the rat and its relationship to reduced ac cochlear potentials: implications for preservation of human hearing. Proc Natl Acad Sci USA. 1982;79:2668–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Borg E, Viberg A. Age-related hair cell loss in spontaneously hypertensive and normotensive rats. Hear Res. 1987;30:111–8.

    Article  CAS  PubMed  Google Scholar 

  44. Rarey KE, Ma YL, Gerhardt KJ, Fregly MJ, Garg LC, Rybak LP. Correlative evidence of hypertension and altered cochlear microhomeostasis: electrophysiological changes in the spontaneously hypertensive rat. Hear Res. 1996;102:63–9.

    Article  CAS  PubMed  Google Scholar 

  45. Lippincott L, Rarey KE. Status of cochlear Na,K-ATPase in the aged SHR rat and its possible role in hearing loss. Eur Arch Otorhinolaryngol. 1997;254:413–6.

    Article  CAS  PubMed  Google Scholar 

  46. Quirk WS, Dengerink HA, Harding JW, Bademian MJ, Swanson SJ, Wright JW. Autoregulation of cochlear blood flow in normotensive and spontaneously hypertensive rats following intracerebroventricularly mediated adjustment of blood pressure. Hear Res. 1989;38:119–23.

    Article  CAS  PubMed  Google Scholar 

  47. Quirk WS, Wright JW, Dengerink HA, Miller JM. Angiotensin II-induced changes in cochlear blood flow and blood pressure in normotensive and spontaneously hypertensive rats. Hear Res. 1988;33:129–35.

    Article  CAS  PubMed  Google Scholar 

  48. Asai Y, Umemura K, Kohno Y, Uematsu T, Nakashima M. An animal model for hearing disturbance due to inner ear ischemia: photochemically induced thrombotic occlusion of the rat anterior inferior cerebellar artery. Eur Arch Otorhinolaryngol. 1993;250:292–6.

    Article  CAS  PubMed  Google Scholar 

  49. Figueiredo RR, de Azevedo AA, Penido Nde O. Tinnitus and arterial hypertension: a systematic review. Eur Arch Otorhinolaryngol. 2015;272:3089–94.

    Article  PubMed  Google Scholar 

  50. Yang P, Ma W, Zheng Y, Yang H, Lin H. A systematic review and meta-analysis on the association between hypertension and tinnitus. Int J Hypertens. 2015;2015:583493.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ramatsoma H, Patrick SM. Hypertension associated with hearing loss and tinnitus among hypertensive adults at a tertiary hospital in South Africa. Front Neurol. 2022;13:857600.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Samelli AG, Santos IS, Padilha F, Gomes RF, Moreira RR, Rabelo CM, et al. Hearing loss, tinnitus, and hypertension: analysis of the baseline data from the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Clinics (Sao Paulo). 2021;76:e2370.

    Article  PubMed  Google Scholar 

  53. Ramage-Morin PL, Gilmour H, Banks R, Pineault D, Atrach M. Hypertension associated with hearing health problems among Canadian adults aged 19 to 79 years. Health Rep. 2021;32:14–26.

    PubMed  Google Scholar 

  54. Borg E, Moller AR. Noise and blood pressure: effect of lifelong exposure in the rat. Acta Physiol Scand. 1978;103:340–2.

    Article  CAS  PubMed  Google Scholar 

  55. Tachibana M, Yamamichi I, Nakae S, Hirasugi Y, Machino M, Mizukoshi O. The site of involvement of hypertension within the cochlea. A comparative study of normotensive and spontaneously hypertensive rats. Acta Otolaryngol. 1984;97:257–65.

    Article  CAS  PubMed  Google Scholar 

  56. Borghi C, Brandolini C, Prandin MG, Dormi A, Modugno GC, Pirodda A. Prevalence of tinnitus in patients withhypertension and the impact of different anti hypertensive drugs on the incidence of tinnitus: a prospective, single-blind, observational study. Curr Ther Res Clin Exp. 2005;66:420–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Liu YH, Huang Z, Vaidya A, Li J, Curhan GC, Wu S, et al. A longitudinal study of altered taste and smell perception and change in blood pressure. Nutr Metab Cardiovasc Dis. 2018;28:877–83.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Nomura K, Nakanishi M, Ishidate F, Iwata K, Taruno A. All-electrical Ca(2+)-independent signal transduction mediates attractive sodium taste in taste buds. Neuron. 2020;106:816–29.e6.

    Article  CAS  PubMed  Google Scholar 

  59. Sakamoto T, Fujii A, Saito N, Kondo H, Ohuchi A. Alteration of amiloride-sensitive salt taste nerve responses in aldosterone/NaCl-induced hypertensive rats. Neurosci Res. 2016;108:60–6.

    Article  CAS  PubMed  Google Scholar 

  60. Shigemura N, Takai S, Hirose F, Yoshida R, Sanematsu K, Ninomiya Y. Expression of renin-angiotensin system components in the taste organ of mice. Nutrients. 2019;11:2251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Serirukchutarungsee S, Watari I, Narukawa M, Podyma-Inoue KA, Sangsuriyothai P, Ono T. Two-generation exposure to a high-fat diet induces the change of salty taste preference in rats. Sci Rep. 2023;13:5742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Thurmond P, Yang JH, Azadzoi KM. LUTS in pelvic ischemia: a new concept in voiding dysfunction. Am J Physiol Ren Physiol. 2016;310:F738–F43.

    Article  CAS  Google Scholar 

  63. Muderrisoglu AE, Sakul AA, Murgas S, de la Rosette J, Michel MC. Association of diabetes, hypertension, and their combination with basal symptoms and treatment responses in overactive bladder patients. Front Pharm. 2023;14:1144470.

    Article  Google Scholar 

  64. Michel MC, Heemann U, de la Rosette J. Weak association between arterial hypertension and overactive bladder baseline symptoms and treatment responses. Front Pharm. 2022;13:1081074.

    Article  CAS  Google Scholar 

  65. Kim KH, Jin LH, Choo GY, Lee HJ, Choi BH, Kwak J, et al. Nonselective blocking of the sympathetic nervous system decreases detrusor overactivity in spontaneously hypertensive rats. Int J Mol Sci. 2012;13:5048–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Strohmaier WL, Schmidt J, Lahme S, Bichler KH. Arterial blood pressure following different types of urinary stone therapy. Presented at the 8th European Symposium on Urolithiasis, Parma, Italy, 1999. Eur Urol. 2000;38:753–7.

    Article  CAS  PubMed  Google Scholar 

  67. Chang CK, Chang CC, Wu VC, Geng JH, Lee HY. The relationship between renal stones and primary aldosteronism. Front Endocrinol (Lausanne). 2022;13:828839.

    Article  PubMed  Google Scholar 

  68. Bourke JB, Griffin JP. Hypertension, diabetes mellitus, and blood groups in benign prostatic hypertrophy. Br J Urol. 1966;38:18–23.

    Article  CAS  PubMed  Google Scholar 

  69. Steers WD, Clemow DB, Persson K, Sherer TB, Andersson KE, Tuttle JB. The spontaneously hypertensive rat: insight into the pathogenesis of irritative symptoms in benign prostatic hyperplasia and young anxious males. Exp Physiol. 1999;84:137–47.

    Article  CAS  PubMed  Google Scholar 

  70. Golomb E, Rosenzweig N, Eilam R, Abramovici A. Spontaneous hyperplasia of the ventral lobe of the prostate in aging genetically hypertensive rats. J Androl. 2000;21:58–64.

    Article  CAS  PubMed  Google Scholar 

  71. Shimizu S, Nagao Y, Shimizu T, Higashi Y, Karashima T, Saito M. Therapeutic effects of losartan on prostatic hyperplasia in spontaneously hypertensive rats. Life Sci. 2021;266:118924.

    Article  CAS  PubMed  Google Scholar 

  72. Yu W, Zhao YY, Zhang ZW, Guo YL, Jin J. Angiotension II receptor 1 blocker modifies the expression of apoptosis-related proteins and transforming growth factor-beta1 in prostate tissue of spontaneously hypertensive rats. BJU Int. 2007;100:1161–5.

    Article  CAS  PubMed  Google Scholar 

  73. Liang Z, Xie B, Li J, Wang X, Wang S, Meng S, et al. Hypertension and risk of prostate cancer: a systematic review and meta-analysis. Sci Rep. 2016;6:31358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wallner LP, Morgenstern H, McGree ME, Jacobson DJ, St Sauver JL, Jacobsen SJ, et al. The effects of metabolic conditions on prostate cancer incidence over 15 years of follow-up: results from the Olmsted County Study. BJU Int. 2011;107:929–35.

    Article  PubMed  Google Scholar 

  75. Hadrava V, Tremblay J, Hamet P. Abnormalities in growth characteristics of aortic smooth muscle cells in spontaneously hypertensive rats. Hypertension. 1989;13:589–97.

    Article  CAS  PubMed  Google Scholar 

  76. Mao Y, Xu X, Wang X, Zheng X, Xie L. Is angiotensin-converting enzyme inhibitors/angiotensin receptor blockers therapy protective against prostate cancer? Oncotarget. 2016;7:6765–73.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Navin S, Ioffe V. The association between hypertension and prostate cancer. Rev Urol. 2017;19:113–8.

    PubMed  PubMed Central  Google Scholar 

  78. Dolmatova E, Waheed N, Olson BM, Patel SA, Mandawat A. The intersection of prostate cancer and hypertension: a call to action. Curr Treat Options Oncol. 2023;24:892–905.

    Article  PubMed  Google Scholar 

  79. Ranugha PSS, Betkerur JB. Antihypertensives in dermatology Part I - uses of antihypertensives in dermatology. Indian J Dermatol Venereol Leprol. 2018;84:6–15.

    Article  CAS  PubMed  Google Scholar 

  80. Hu MY, Yang Q, Zheng J. The association of psoriasis and hypertension: focusing on anti-inflammatory therapies and immunological mechanisms. Clin Exp Dermatol. 2020;45:836–40.

    Article  CAS  PubMed  Google Scholar 

  81. Neimann AL, Shin DB, Wang X, Margolis DJ, Troxel AB, Gelfand JM. Prevalence of cardiovascular risk factors in patients with psoriasis. J Am Acad Dermatol. 2006;55:829–35.

    Article  PubMed  Google Scholar 

  82. Sommer DM, Jenisch S, Suchan M, Christophers E, Weichenthal M. Increased prevalence of the metabolic syndrome in patients with moderate to severe psoriasis. Arch Dermatol Res. 2006;298:321–8.

    Article  PubMed  Google Scholar 

  83. Lamb FS, Choi H, Miller MR, Stark RJ. TNFalpha and reactive oxygen signaling in vascular smooth muscle cells in hypertension and atherosclerosis. Am J Hypertens. 2020;33:902–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Triantafyllidi H, Grafakos A, Ikonomidis I, Pavlidis G, Trivilou P, Schoinas A, et al. Severity of alopecia predicts coronary changes and arterial stiffness in untreated hypertensive men. J Clin Hypertens (Greenwich). 2017;19:51–7.

    Article  CAS  PubMed  Google Scholar 

  85. Sainte Marie Y, Toulon A, Paus R, Maubec E, Cherfa A, Grossin M, et al. Targeted skin overexpression of the mineralocorticoid receptor in mice causes epidermal atrophy, premature skin barrier formation, eye abnormalities, and alopecia. Am J Pathol. 2007;171:846–60.

    Article  CAS  Google Scholar 

  86. Ahouansou S, Le Toumelin P, Crickx B, Descamps V. Association of androgenetic alopecia and hypertension. Eur J Dermatol. 2007;17:220–2.

    PubMed  Google Scholar 

  87. Arias-Santiago S, Gutierrez-Salmeron MT, Buendia-Eisman A, Giron-Prieto MS, Naranjo-Sintes R. Hypertension and aldosterone levels in women with early-onset androgenetic alopecia. Br J Dermatol. 2010;162:786–9.

    Article  CAS  PubMed  Google Scholar 

  88. Danesh-Shakiba M, Poorolajal J, Alirezaei P. Androgenetic alopecia: relationship to anthropometric indices, blood pressure and life-style habits. Clin Cosmet Invest Dermatol. 2020;13:137–43.

    Article  Google Scholar 

  89. Kamiyama S, Kobayashi S, Takahashi E, Wakamatsu E, Kuraishi T. Osteoporosis in hypertensive and non-hypertensive subjects–an epidemiologic approach to the etiology of osteoporosis. Tohoku J Exp Med. 1968;94:225–30.

    Article  CAS  PubMed  Google Scholar 

  90. Cappuccio FP, Meilahn E, Zmuda JM, Cauley JA. High blood pressure and bone-mineral loss in elderly white women: a prospective study. Study of Osteoporotic Fractures Research Group. Lancet. 1999;354:971–5.

    Article  CAS  PubMed  Google Scholar 

  91. Mussolino ME, Gillum RF. Bone mineral density and hypertension prevalence in postmenopausal women: results from the Third National Health and Nutrition Examination Survey. Ann Epidemiol. 2006;16:395–9.

    Article  PubMed  Google Scholar 

  92. Farr JN, Charkoudian N, Barnes JN, Monroe DG, McCready LK, Atkinson EJ, et al. Relationship of sympathetic activity to bone microstructure, turnover, and plasma osteopontin levels in women. J Clin Endocrinol Metab. 2012;97:4219–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Veldhuis-Vlug AG, El Mahdiui M, Endert E, Heijboer AC, Fliers E, Bisschop PH. Bone resorption is increased in pheochromocytoma patients and normalizes following adrenalectomy. J Clin Endocrinol Metab. 2012;97:E2093–7.

    Article  CAS  PubMed  Google Scholar 

  94. He JY, Jiang LS, Dai LY. The roles of the sympathetic nervous system in osteoporotic diseases: a review of experimental and clinical studies. Ageing Res Rev. 2011;10:253–63.

    Article  CAS  PubMed  Google Scholar 

  95. Kondo H, Takeuchi S, Togari A. beta-Adrenergic signaling stimulates osteoclastogenesis via reactive oxygen species. Am J Physiol Endocrinol Metab. 2013;304:E507–15.

    Article  CAS  PubMed  Google Scholar 

  96. Zhang R, Yin H, Yang M, Lei X, Zhen D, Zhang Z. Advanced progress of the relationship between antihypertensive drugs and bone metabolism. Hypertension. 2023. e-pub ahead of print 20230907; https://doi.org/10.1161/HYPERTENSIONAHA.123.21648.

  97. Shimizu H, Nakagami H, Osako MK, Hanayama R, Kunugiza Y, Kizawa T, et al. Angiotensin II accelerates osteoporosis by activating osteoclasts. FASEB J. 2008;22:2465–75.

    Article  CAS  PubMed  Google Scholar 

  98. Findlay DM. Vascular pathology and osteoarthritis. Rheumatol (Oxf). 2007;46:1763–8.

    Article  CAS  Google Scholar 

  99. Ching K, Houard X, Berenbaum F, Wen C. Hypertension meets osteoarthritis - revisiting the vascular aetiology hypothesis. Nat Rev Rheumatol. 2021;17:533–49.

    Article  PubMed  Google Scholar 

  100. Funck-Brentano T, Nethander M, Moverare-Skrtic S, Richette P, Ohlsson C. Causal factors for knee, hip, and hand osteoarthritis: a Mendelian randomization study in the UK Biobank. Arthritis Rheumatol. 2019;71:1634–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Yeater TD, Griffith JL, Cruz CJ, Patterson FM, Aldrich JL, Allen KD. Hypertension contributes to exacerbated osteoarthritis pathophysiology in rats in a sex-dependent manner. Arthritis Res Ther. 2023;25:7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Cutler C, Kiernan M, Willis JR, Gallardo-Alfaro L, Casas-Agustench P, White D, et al. Post-exercise hypotension and skeletal muscle oxygenation is regulated by nitrate-reducing activity of oral bacteria. Free Radic Biol Med. 2019;143:252–9.

    Article  CAS  PubMed  Google Scholar 

  103. Murase S, Sakitani N, Maekawa T, Yoshino D, Takano K, Konno A, et al. Interstitial-fluid shear stresses induced by vertically oscillating head motion lower blood pressure in hypertensive rats and humans. Nat Biomed Eng. 2023. e-pub ahead of print 20230706; https://doi.org/10.1038/s41551-023-01061-x.

  104. Takeshita H, Yamamoto K, Mogi M, Nozato S, Rakugi H. Is the anti-aging effect of ACE2 due to its role in the renin-angiotensin system?-Findings from a comparison of the aging phenotypes of ACE2-deficient, Tsukuba hypertensive, and Mas-deficient mice. Hypertens Res. 2023;46:1210–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Yamamoto K, Takeshita H, Rakugi H. ACE2, angiotensin 1-7 and skeletal muscle: review in the era of COVID-19. Clin Sci (Lond). 2020;134:3047–62.

    Article  CAS  PubMed  Google Scholar 

  106. Oh S, Yang JY, Park CH, Son KH, Byun K. Dieckol reduces muscle atrophy by modulating angiotensin type II type 1 receptor and NADPH oxidase in spontaneously hypertensive rats. Antioxid (Basel). 2021;10:1561.

    Article  CAS  Google Scholar 

  107. Mogi M. Could management of blood pressure prevent dementia in the elderly? Clin Hypertens. 2019;25:27.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Mogi M. Hypertension management to prevent dementia. Hypertens Res. 2022;45:573–5.

    Article  PubMed  Google Scholar 

  109. Schaare HL, Blochl M, Kumral D, Uhlig M, Lemcke L, Valk SL, et al. Associations between mental health, blood pressure and the development of hypertension. Nat Commun. 2023;14:1953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Li Z, Li Y, Chen L, Chen P, Hu Y. Prevalence of depression in patients with hypertension: a systematic review and meta-analysis. Med (Baltim). 2015;94:e1317.

    Article  CAS  Google Scholar 

  111. Huangfu N, Lu Y, Ma H, Hu Z, Cui H, Yang F. Genetic liability to mental disorders in relation to the risk of hypertension. Front Cardiovasc Med. 2023;10:1087251.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Mrowietz U, Sumbul M, Gerdes S. Depression, a major comorbidity of psoriatic disease, is caused by metabolic inflammation. J Eur Acad Dermatol Venereol. 2023;37:1731–8.

    Article  CAS  PubMed  Google Scholar 

  113. Althammer F, Roy RK, Kirchner MK, Campos-Lira E, Whitley KE, Davis S, et al. Angiotensin II-mediated neuroinflammation in the hippocampus contributes to neuronal deficits and cognitive impairment in heart failure rats. Hypertension. 2023;80:1258–73.

    Article  CAS  PubMed  Google Scholar 

  114. Setiadi A, Korim WS, Elsaafien K, Yao ST. The role of the blood-brain barrier in hypertension. Exp Physiol. 2018;103:337–42.

    Article  CAS  PubMed  Google Scholar 

  115. Peppard PE, Young T, Palta M, Skatrud J. Prospective study of the association between sleep-disordered breathing and hypertension. N. Engl J Med. 2000;342:1378–84.

    Article  CAS  PubMed  Google Scholar 

  116. Fletcher EC, Bao G, Li R. Renin activity and blood pressure in response to chronic episodic hypoxia. Hypertension. 1999;34:309–14.

    Article  CAS  PubMed  Google Scholar 

  117. Narkiewicz K, Kato M, Phillips BG, Pesek CA, Davison DE, Somers VK. Nocturnal continuous positive airway pressure decreases daytime sympathetic traffic in obstructive sleep apnea. Circulation. 1999;100:2332–5.

    Article  CAS  PubMed  Google Scholar 

  118. Khaire AA, Thakar SR, Wagh GN, Joshi SR. Placental lipid metabolism in preeclampsia. J Hypertens. 2021;39:127–34.

    Article  CAS  PubMed  Google Scholar 

  119. Antunes VR, Brailoiu GC, Kwok EH, Scruggs P, Dun NJ. Orexins/hypocretins excite rat sympathetic preganglionic neurons in vivo and in vitro. Am J Physiol Regul Integr Comp Physiol. 2001;281:R1801–7.

    Article  CAS  PubMed  Google Scholar 

  120. Huber MJ, Fan Y, Jiang E, Zhu F, Larson RA, Yan J, et al. Increased activity of the orexin system in the paraventricular nucleus contributes to salt-sensitive hypertension. Am J Physiol Heart Circ Physiol. 2017;313:H1075–H86.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Fan Y, Jiang E, Hahka T, Chen QH, Yan J, Shan Z. Orexin A increases sympathetic nerve activity through promoting expression of proinflammatory cytokines in Sprague Dawley rats. Acta Physiol (Oxf). 2018;222:e12963.

  122. Li A, Hindmarch CC, Nattie EE, Paton JF. Antagonism of orexin receptors significantly lowers blood pressure in spontaneously hypertensive rats. J Physiol. 2013;591:4237–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kario K, Yamasaki K, Yagi K, Tsukamoto M, Yamazaki S, Okawara Y, et al. Effect of suvorexant on nighttime blood pressure in hypertensive patients with insomnia: the SUPER-1 study. J Clin Hypertens (Greenwich). 2019;21:896–903.

    Article  CAS  PubMed  Google Scholar 

  124. Budhiraja R, Roth T, Hudgel DW, Budhiraja P, Drake CL. Prevalence and polysomnographic correlates of insomnia comorbid with medical disorders. Sleep. 2011;34:859–67.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Taylor DJ, Mallory LJ, Lichstein KL, Durrence HH, Riedel BW, Bush AJ. Comorbidity of chronic insomnia with medical problems. Sleep. 2007;30:213–8.

    Article  PubMed  Google Scholar 

  126. Judkins CP, Wang Y, Jelinic M, Bobik A, Vinh A, Sobey CG, et al. Association of constipation with increased risk of hypertension and cardiovascular events in elderly Australian patients. Sci Rep. 2023;13:10943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Kubozono T, Akasaki Y, Kawasoe S, Ojima S, Yamaguchi S, Kuwahata S, et al. Relationship between defecation status and blood pressure level or blood pressure variability. Hypertens Res. 2023. e-pub ahead of print 20230917; https://doi.org/10.1038/s41440-023-01435-3.

  128. Mishima E. Constipation and high blood pressure variability. Hypertens Res. 2023. e-pub ahead of print 20231120; https://doi.org/10.1038/s41440-023-01514-5.

  129. Kabayama M, Kamide K, Gondo Y, Masui Y, Nakagawa T, Ogawa M, et al. The association of blood pressure with physical frailty and cognitive function in community-dwelling septuagenarians, octogenarians, and nonagenarians: the SONIC study. Hypertens Res. 2020;43:1421–9.

    Article  PubMed  Google Scholar 

  130. Denfeld QE, Winters-Stone K, Mudd JO, Gelow JM, Kurdi S, Lee CS. The prevalence of frailty in heart failure: a systematic review and meta-analysis. Int J Cardiol. 2017;236:283–9.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Mogi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mogi, M., Ikegawa, Y., Haga, S. et al. Hypertension facilitates age-related diseases. ~ Is hypertension associated with a wide variety of diseases?~. Hypertens Res 47, 1246–1259 (2024). https://doi.org/10.1038/s41440-024-01642-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-024-01642-6

Keywords

Search

Quick links