Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Donepezil attenuates progression of cardiovascular remodeling and improves prognosis in spontaneously hypertensive rats with chronic myocardial infarction

Abstract

The acetylcholinesterase inhibitor donepezil restores autonomic balance, reduces inflammation, and improves long-term survival in rats with chronic heart failure (CHF) following myocardial infarction (MI). As arterial hypertension is associated with a significant risk of cardiovascular death, we investigated the effectiveness of donepezil in treating CHF in spontaneously hypertensive rats (SHR). CHF was induced in SHR by inducing permanent MI. After 2 weeks, the surviving SHR were randomly assigned to sham-operated (SO), untreated (UT), or oral donepezil-treated (DT, 5 mg/kg/day) groups, and various vitals and parameters were monitored. After 7 weeks of treatment, heart rate and arterial hypertension reduced significantly in DT rats than in UT rats. Donepezil treatment improved 50-day survival (41% to 80%, P = 0.004); suppressed progression of cardiac hypertrophy, cardiac dysfunction (cardiac index: 133 ± 5 vs. 112 ± 5 ml/min/kg, P < 0.05; left ventricular end-diastolic pressure: 12 ± 3 vs. 22 ± 2 mmHg, P < 0.05; left ventricular +dp/dtmax: 5348 ± 338 vs. 4267 ± 114 mmHg/s, P < 0.05), systemic inflammation, and coronary artery remodeling (wall thickness: 26.3 ± 1.4 vs. 34.7 ± 0.7 μm, P < 0.01; media-to-lumen ratio: 3.70 ± 0.73 vs. 8.59 ± 0.84, P < 0.001); increased capillary density; and decreased plasma catecholamine, B-type natriuretic peptide, arginine vasopressin, and angiotensin II levels. Donepezil treatment attenuated cardiac and coronary artery remodeling, mitigated cardiac dysfunction, and significantly improved the prognosis of SHR with CHF.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets used and/or analyzed in the current study are available from the corresponding author upon reasonable request.

References

  1. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Jr Colvin MM, et al. 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: A report of the American college of cardiology/american heart association task force on clinical practice guidelines and the heart failure society of America. J Card Fail. 2017. https://doi.org/10.1016/j.cardfail.2017.04.014.

  2. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2016;18:891–975.

    Article  PubMed  Google Scholar 

  3. Oparil S, Schmieder RE. New approaches in the treatment of hypertension. Circ Res. 2015;116:1074–95.

    Article  CAS  PubMed  Google Scholar 

  4. Androne AS, Hryniewicz K, Goldsmith R, Arwady A, Katz SD. Acetylcholinesterase inhibition with pyridostigmine improves heart rate recovery after maximal exercise in patients with chronic heart failure. Heart. 2003;89:854–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. La Rovere MT, Bigger JT Jr, Marcus FI, Mortara A, Schwartz PJ. Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. ATRAMI (Autonomic Tone and Reflexes After Myocardial Infarction) Investigators. Lancet. 1998;351:478–84.

    Article  PubMed  Google Scholar 

  6. Packer M. The neurohormonal hypothesis: a theory to explain the mechanism of disease progression in heart failure. J Am Coll Cardiol. 1992;20:248–54.

    Article  CAS  PubMed  Google Scholar 

  7. Rosenwinkel ET, Bloomfield DM, Arwady MA, Goldsmith RL. Exercise and autonomic function in health and cardiovascular disease. Cardiol Clin. 2001;19:369–87.

    Article  CAS  PubMed  Google Scholar 

  8. Binkley PF, Nunziata E, Haas GJ, Nelson SD, Cody RJ. Parasympathetic withdrawal is an integral component of autonomic imbalance in congestive heart failure: demonstration in human subjects and verification in a paced canine model of ventricular failure. J Am Coll Cardiol. 1991;18:464–72.

    Article  CAS  PubMed  Google Scholar 

  9. McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Bohm M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021;42:3599–726.

    Article  CAS  PubMed  Google Scholar 

  10. Kleiger RE, Miller JP, Bigger JT Jr, Moss AJ. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am J Cardiol. 1987;59:256–62.

    Article  CAS  PubMed  Google Scholar 

  11. Odemuyiwa O, Malik M, Farrell T, Bashir Y, Poloniecki J, Camm J. Comparison of the predictive characteristics of heart rate variability index and left ventricular ejection fraction for all-cause mortality, arrhythmic events and sudden death after acute myocardial infarction. Am J Cardiol. 1991;68:434–9.

    Article  CAS  PubMed  Google Scholar 

  12. Li M, Zheng C, Sato T, Kawada T, Sugimachi M, Sunagawa K. Vagal nerve stimulation markedly improves long-term survival after chronic heart failure in rats. Circulation. 2004;109:120–4.

    Article  PubMed  Google Scholar 

  13. De Ferrari GM, Crijns HJ, Borggrefe M, Milasinovic G, Smid J, Zabel M, et al. Chronic vagus nerve stimulation: a new and promising therapeutic approach for chronic heart failure. Eur Heart J. 2011;32:847–55.

    Article  PubMed  Google Scholar 

  14. Premchand RK, Sharma K, Mittal S, Monteiro R, Dixit S, Libbus I, et al. Autonomic regulation therapy via left or right cervical vagus nerve stimulation in patients with chronic heart failure: results of the ANTHEM-HF trial. J Card Fail. 2014;20:808–16.

    Article  PubMed  Google Scholar 

  15. Gold MR, Van Veldhuisen DJ, Hauptman PJ, Borggrefe M, Kubo SH, Lieberman RA. et al. Vagus nerve stimulation for the treatment of heart failure: the INOVATE-HF trial. J Am Coll Cardiol. 2016;68:149–58.

    Article  PubMed  Google Scholar 

  16. Li M, Zheng C, Kawada T, Inagaki M, Uemura K, Shishido T, et al. Donepezil markedly improves long-term survival in rats with chronic heart failure after extensive myocardial infarction. Circ J. 2013;77:2519–25.

    Article  CAS  PubMed  Google Scholar 

  17. Li M, Zheng C, Kawada T, Inagaki M, Uemura K, Sugimachi M. Adding the acetylcholinesterase inhibitor, donepezil, to losartan treatment markedly improves long-term survival in rats with chronic heart failure. Eur J Heart Fail. 2014;16:1056–65.

    Article  CAS  PubMed  Google Scholar 

  18. Li M, Zheng C, Kawada T, Inagaki M, Uemura K, Sugimachi M. Intracerebroventricular infusion of donepezil prevents cardiac remodeling and improves the prognosis of chronic heart failure rats. J Physiol Sci. 2020;70:11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li M, Zheng C, Kawada T, Inagaki M, Uemura K, Akiyama T, et al. Impact of peripheral α7-nicotinic acetylcholine receptors on cardioprotective effects of donepezil in chronic heart failure rats. Cardiovasc Drugs Ther. 2021;35:877–88.

    Article  CAS  PubMed  Google Scholar 

  20. Shimokawa H, Miura M, Nochioka K, Sakata Y. Heart failure as a general pandemic in Asia. Eur J Heart Fail. 2015;17:884–92.

    Article  PubMed  Google Scholar 

  21. Humphrey JD. Mechanisms of vascular remodeling in hypertension. Am J Hypertens. 2021;34:432–41.

    Article  PubMed  Google Scholar 

  22. Itter G, Jung W, Juretschke P, Schoelkens BA, Linz W. A model of chronic heart failure in spontaneous hypertensive rats (SHR). Lab Anim. 2004;38:138–48.

    Article  CAS  PubMed  Google Scholar 

  23. Brown IAM, Diederich L, Good ME, DeLalio LJ, Murphy SA, Cortese-Krott MM, et al. Vascular smooth muscle remodeling in conductive and resistance arteries in hypertension. Arterioscler Thromb Vasc Biol. 2018;38:1969–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Avitan I, Halperin Y, Saha T, Bloch N, Atrahimovich D, Polis B, et al. Towards a consensus on Alzheimer’s disease comorbidity? J Clin Med. 2021;10:4360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nordstrom P, Religa D, Wimo A, Winblad B, Eriksdotter M. The use of cholinesterase inhibitors and the risk of myocardial infarction and death: a nationwide cohort study in subjects with Alzheimer’s disease. Eur Heart J. 2013;34:2585–91.

    Article  PubMed  Google Scholar 

  26. Hsieh MJ, Chen DY, Lee CH, Wu CL, Chen YJ, Huang YT, et al. Association between cholinesterase inhibitors and new-onset heart failure in patients with Alzheimer’s disease: a nationwide propensity score matching study. Front Cardiovasc Med. 2022;9:831730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Morris R, Luboff H, Jose RP, Eckhoff K, Bu K, Pham M, et al. Bradycardia due to donepezil in adults: systematic analysis of FDA adverse event reporting system. J Alzheimers Dis. 2021;81:297–307.

    Article  CAS  PubMed  Google Scholar 

  28. Baumgartner H, Falk V, Bax JJ, De Bonis M, Hamm C, Holm PJ, et al. 2017 ESC/EACTS Guidelines for the management of valvular heart disease. Eur Heart J. 2017;38:2739–91.

    Article  PubMed  Google Scholar 

  29. Li M, Zheng C, Kawada T, Uemura K, Inagaki M, Saku K, et al. Early donepezil monotherapy or combination with metoprolol significantly prevents subsequent chronic heart failure in rats with reperfused myocardial infarction. J Physiol Sci. 2022;72:12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Silke B. Beta-blockade in CHF: pathophysiological considerations. Eur Heart J. 2006;8:C13–8.

    Article  CAS  Google Scholar 

  31. da Silva Goncalves Bos D, Van Der Bruggen CEE, Kurakula K, Sun XQ, Casali KR, Casali AG, et al. Contribution of impaired parasympathetic activity to right ventricular dysfunction and pulmonary vascular remodeling in pulmonary arterial hypertension. Circulation. 2018;137:910–24.

    Article  PubMed  Google Scholar 

  32. DeFelice A, Frering R, Horan P. Time course of hemodynamic changes in ras with healed severe myocardial infarction. Am J Physiol. 1989;257:H289–96.

    CAS  PubMed  Google Scholar 

  33. Collister JP, Hartnett C, Mayerhofer T, Nahey D, Stauthammer C, Krüger M, et al. Overexpression of copper/zinc superoxide dismutase in the median preoptic nucleus improves cardiac function after myocardial infarction in the rat. Clin Exp Pharm Physiol. 2016;43:960–6.

    Article  CAS  Google Scholar 

  34. Miao Y, Li M, Wang C, Li H, Chen H. Effect of β-adrenergic receptor kinase inhibitor on post-myocardial infarction heart failure in rats. Int J Clin Exp Pathol. 2017;10:9858–65.

    PubMed  PubMed Central  Google Scholar 

  35. Fletcher PJ, Pfeffer JM, Pfeffer MA. Altered sensitivity to increases in vascular resistance in rats with hypertension and myocardial infarction. Am Heart J. 1986;111:120.

    Article  CAS  PubMed  Google Scholar 

  36. Cupples WA, Braam B. Assessment of renal autoregulation. Am J Physiol Ren Physiol. 2007;292:F1105–23.

    Article  CAS  Google Scholar 

  37. Andersson U, Tracey KJ. Neural reflexes in inflammation and immunity. J Exp Med. 2012;209:1057–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, et al. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature. 2003;421:384–8.

    Article  CAS  PubMed  Google Scholar 

  39. Hashimoto T, Ichiki T, Watanabe A, Hurt-Camejo E, Michaelsson E, Ikeda J, et al. Stimulation of alpha7 nicotinic acetylcholine receptor by AR-R17779 suppresses atherosclerosis and aortic aneurysm formation in apolipoprotein E-deficient mice. Vasc Pharm. 2014;61:49–55.

    Article  CAS  Google Scholar 

Download references

Funding

This study was partly supported by JSPS KAKENHI (grant numbers 26461099, 26430103, 20K20622, 22K08222), the research program of the Japan Agency for Medical Research and Development (22ama121050j0001), the Research Program of the Ministry of Internal Affairs and Communications (SCOPE: JP225006004), the Intramural Research Fund for Cardiovascular Diseases of the National Cerebral and Cardiovascular Center (21-2-7, 21-2-9), a research grant from JST (JPMJPF2018), and the research grant from NTT Research, Inc. The authors confirm that the funders did not influence the study design, contents of the article, or selection of this journal.

Author information

Authors and Affiliations

Authors

Contributions

Meihua Li and Can Zheng designed and performed the experiments. Meihua Li performed the statistical analyses and drafted the first manuscript. Toru Kawada, Kazunori Uemura, Shohei Yokota, Hiroki Matsushita, and Keita Saku interpreted the results. Toru Kawada and Keita Saku edited and reviewed the manuscript. All authors commented on the previous versions of the manuscript and read and approved the final manuscript.

Corresponding author

Correspondence to Meihua Li.

Ethics declarations

Ethics approval and consent to participate

Animal care protocols and all experiments were performed in strict accordance with the Guiding Principles for the Care and Use of Animals in the Field of Physiological Science, which was approved by the Physiological Society of Japan. All protocols were reviewed and approved by the Animal Subject Committee of the National Cerebral and Cardiovascular Center (#15004 and #16002).

Conflict of interest

The authors declare no competing interests.

Research involving human participants and/or animals

This study did not involve human participants. The Animal Subject Committee of the National Cerebral and Cardiovascular Center has approved the animal experiments.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Zheng, C., Kawada, T. et al. Donepezil attenuates progression of cardiovascular remodeling and improves prognosis in spontaneously hypertensive rats with chronic myocardial infarction. Hypertens Res 47, 1298–1308 (2024). https://doi.org/10.1038/s41440-024-01629-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-024-01629-3

Keywords

Search

Quick links